Research Article| Volume 159, ISSUE 1, P67-71, November 2011

Download started.


Comparative expression profiles for KiSS-1 and REN genes in preeclamptic and healthy placental tissues



      The aim of the present work was to look at differences in the placental tissue expression of KiSS-1 and REN genes from preeclamptic and healthy pregnant women, that could account for a possible synergistic function for both genes in the pathogenesis of preeclampsia.

      Study design

      This case–control study involved 27 preeclamptic women and 27 normoevolutive pregnant women. cDNA was obtained from placental tissue to carry out qPCR for both KiSS-1 and REN genes in order to compare mRNA expression levels in the studied groups. Statistical analysis showed expression differences that correlate with clinical and/or biochemical variables.


      Higher expression for KiSS-1 in PEE vs. control woman (p = 0.001) was observed, whereas no difference was observed for REN expression (p = 0.300) when all the subjects were included. However, REN expression was significant higher when the samples were stratified according to preeclampsia severity. For 18 mild preeclamptic patients the p-value was p = 0.001 compared to their controls, while for the remaining nine with severe preeclampsia the expression became significant (p = 0.001).


      Our results suggest that the high KiSS-1 expression seen in preeclamptic patients is in accordance with its role as an inhibitor of trophoblast invasiveness and maintained until the end of gestation. On the other hand, aggressive therapeutic management and/or severity status of patients have a direct effect on placental REN expression levels, masking the natural high expression of this gene on preeclamptic placental tissue. Therefore it was not possible to establish a real concordant expression profile for KiSS-1 and REN genes.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


        • Sibai B.M.
        Diagnosis, prevention, and management of eclampsia.
        Obstet Gynecol. 2005; 105: 402-410
        • Redman C.W.
        • Sargent I.L.
        Latest advances in understanding preeclampsia.
        Science. 2005; 308: 1592-1594
        • Sankaralingam S.
        • Arenas I.A.
        • Lalu M.M.
        • Davidge S.T.
        Preeclampsia: current understanding of the molecular basis of vascular dysfunction.
        Expert Rev Mol Med. 2006; 8: 1-20
        • Bilban M.
        • Ghaffari-Tabrizi N.
        • Hintermann E.
        • et al.
        Kisspeptin-10, a KiSS-1/metastin-derived decapeptide, is a physiological invasion inhibitor of primary human trophoblasts.
        J Cell Sci. 2004; 117: 1319-1328
        • Qiao C.
        • Wang C.H.
        • Shang T.
        • Lin Q.D.
        Clinical significance of KiSS-1 and matrix metalloproteinase-9 expression in trophoblasts of women with preeclampsia and their relation to perinatal outcome of neonates.
        Zhonghua Fu Chan Ke Za Zhi. 2005; 40: 585-590
        • Hiden U.
        • Bilban M.
        • Knofler M.
        • Desoye G.
        Kisspeptins and the placenta: regulation of trophoblast invasion.
        Rev Endocr Metab Disord. 2007; 8: 31-39
        • Schulz L.C.
        • Widmaier E.P.
        The effect of leptin on mouse trophoblast cell invasion.
        Biol Reprod. 2004; 71: 1963-1967
        • Das S.K.
        • Yano S.
        • Wang J.
        • Edwards D.R.
        • Nagase H.
        • Dey S.K.
        Expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in the mouse uterus during the peri-implantation period.
        Dev Genet. 1997; 21: 44-54
        • Janneau J.L.
        • Maldonado-Estrada J.
        • Tachdjian G.
        • et al.
        Transcriptional expression of genes involved in cell invasion and migration by normal and tumoral trophoblast cells.
        J Clin Endocrinol Metab. 2002; 87: 5336-5339
        • Horikoshi Y.
        • Matsumoto H.
        • Takatsu Y.
        • et al.
        Dramatic elevation of plasma metastin concentrations in human pregnancy: metastin as a novel placenta-derived hormone in humans.
        J Clin Endocrinol Metab. 2003; 88: 914-919
        • Fisher S.J.
        The placental problem: linking abnormal cytotrophoblast differentiation to the maternal symptoms of preeclampsia.
        Reprod Biol Endocrinol. 2004; 2: 53
        • Khong T.Y.
        • De Wolf F.
        • Robertson W.
        • Brosens I.
        Inadequate maternal vascular response to placentation in pregnancies complicated by pre-eclampsia and by small-for-gestational age infants.
        Br J Obstet Gynaecol. 1986; 93: 1049-1059
        • Lyall F.
        Development of the utero-placental circulation: the role of carbon monoxide and nitric oxide in trophoblast invasion and spiral artery transformation.
        Microsc Res Tech. 2003; 60: 402-411
      1. The placental bed: control of trophoblast invasion in normal pregnancy and preeclampsia.
        in: Lyall F. VIIth International Conference on the Extracellular Matrix of the Female Reproductive Tract and Simpson Symposia. 2004
        • Nielsen A.H.
        • Schauser K.H.
        • Poulsen K.
        Current topic: the uteroplacental renin–angiotensin system.
        Placenta. 2000; 21: 468-477
        • Anton L.
        • Merrill D.C.
        • Neves L.A.
        • et al.
        Activation of local chorionic villi angiotensin II levels but not angiotensin (1-7) in preeclampsia.
        Hypertension. 2008; 51: 1066-1072
        • Xia Y.
        • Wen H.
        • Prashner H.R.
        • et al.
        Pregnancy-induced changes in renin gene expression in mice.
        Biol Reprod. 2002; 66: 135-143
        • Reid I.A.
        • Morris B.J.
        • Ganong W.F.
        The renin–angiotensin system.
        Annu Rev Physiol. 1978; 40: 377-410
        • Li C.
        • Ansari R.
        • Yu Z.
        • Shah D.
        Definitive molecular evidence of renin–angiotensin system in human uterine decidual cells.
        Hypertension. 2000; 36: 159-164
        • Irani R.A.
        • Xia Y.
        The functional role of the renin–angiotensin system in pregnancy and preeclampsia.
        Placenta. 2008; 29: 763-771
        • Hladunewich M.
        • Karumanchi S.A.
        • Lafayette R.
        Pathophysiology of the clinical manifestations of preeclampsia.
        Clin J Am Soc Nephrol. 2007; 2: 543-549
        • Hagemann A.
        • Nielsen A.H.
        • Poulsen K.
        The uteroplacental renin–angiotensin system: a review.
        Exp Clin Endocrinol. 1994; 102: 252-261
        • Nistala R.
        • Zhang X.
        • Sigmund C.
        Differential expression of the closely linked KISS1 REN, and FLJ10761 genes in transgenic mice.
        Physiol Genomics. 2004; 17: 1-3
      2. GeneCards [world wide web]. Weizmann Institute of Science; 2010 [updated September 18, 2010; cited 2010 November 03]. Available from:

      3. GeneCards [world wide web]: Weizmann Institute of Science; 2010 [updated September 17, 2010; cited 2010 November 03]. Available from:

        • Lee J.M.
        • Sonnhammer E.L.
        Genomic gene clustering analysis of pathways in eukaryotes.
        Genome Res. 2003; 13: 875-882
        • Chen W.H.
        • de Meaux J.
        • Lercher M.J.
        Co-expression of neighbouring genes in Arabidopsis: separating chromatin effects from direct interactions.
        BMC Genomics. 2010; 11: 178
        • Reynolds R.M.
        • Logie J.J.
        • Roseweir A.K.
        • McKnight A.J.
        • Millar R.P.
        A role for kisspeptins in pregnancy: facts and speculations.
        Reproduction. 2009; 138: 1-7
        • Shah D.M.
        Role of the renin–angiotensin system in the pathogenesis of preeclampsia.
        Am J Physiol Renal Physiol. 2005; 288: F614-F625
      4. NIH. Working group report in high blood pressure in pregnancy. Report. EUA: National Institutes of Health National Heart, Lung and Blood Institute and National High Blood Pressure Education Program; 2000.

        • Peralta Pedrero M.L.
        • Gúzman Ibarra F. MdlA.
        • Bassavilvazo Rodríguez M.A.
        • et al.
        Elaboración y validación de un Índice para el diagnóstico de preeclampsia.
        Ginecol Obstet Mex. 2006; 74: 205-214
        • Sitras V.
        • Paulssen R.H.
        • Gronaas H.
        • Vartun A.
        • Acharya G.
        Gene expression profile in labouring and non-labouring human placenta near term.
        Mol Hum Reprod. 2008; 14: 61-65
        • Lee K.J.
        • Shim S.H.
        • Kang K.M.
        • et al.
        Global gene expression changes induced in the human placenta during labor.
        Placenta. 2010; 31: 698-704
        • Makri A.
        • Pissimissis N.
        • Lembessis P.
        • Polychronakos C.
        • Koutsilieris M.
        The kisspeptin (KiSS-1)/GPR54 system in cancer biology.
        Cancer Treat Rev. 2008;
        • Athanassiades A.
        • Lala P.K.
        Role of placenta growth factor (PIGF) in human extravillous trophoblast proliferation, migration and invasiveness.
        Placenta. 1998; 19: 465-473
        • Mead E.J.
        • Maguire J.J.
        • Kuc R.E.
        • Davenport A.P.
        Kisspeptins: a multifunctional peptide system with a role in reproduction, cancer and the cardiovascular system.
        Br J Pharmacol. 2007; 151: 1143-1153
        • Tewksbury D.A.
        • Pan N.
        • Kaiser S.J.
        Detection of a receptor for angiotensinogen on placental cells.
        Am J Hypertens. 2003; 16: 59-62
        • Anton L.
        • Brosnihan K.B.
        Systemic and uteroplacental renin–angiotensin system in normal and pre-eclamptic pregnancies.
        Ther Adv Cardiovasc Dis. 2008; 2: 349-362
        • Herse F.
        • Dechend R.
        • Harsem N.K.
        • et al.
        Dysregulation of the circulating and tissue-based renin–angiotensin system in preeclampsia.
        Hypertension. 2007; 3: 604-611
        • Shah D.M.
        • Banu J.M.
        • Chirgwin J.M.
        • Tekmal R.R.
        Reproductive tissue renin gene expression in preeclampsia.
        Hypertens Pregnancy. 2000; 19: 341-351
        • Nishizawa H.
        • Pryor-Koishi K.
        • Kato T.
        • Kowa H.
        • Kurahashi H.
        • Udagawa Y.
        Microarray analysis of differentially expressed fetal genes in placental tissue derived from early and late onset severe pre-eclampsia.
        Placenta. 2007; 28: 487-497
        • Rampello S.
        • Frigerio L.
        • Ricci E.
        • Rota E.
        • Lucianetti M.
        • Parazzini F.
        Transabdominal uterine arteries Doppler at 12–14th and 20–24th week of gestation and pregnancy outcome: a prospective study.
        Eur J Obstet Gynecol Reprod Biol. 2009; 147: 135-138
        • Lunghi L.
        • Ferreti M.E.
        • Medici M.
        • Biondi C.
        • Vesce F.
        Control of Human trophoblast function.
        Reprod Biol Endocrinol. 2007; 5: 1-14
        • Galea P.
        • Barigye O.
        • Wee L.
        • Jain V.
        • Sullivan M.
        • Fisk N.M.
        The placenta contributes to activation of the renin angiotensin system in twin–twin transfusion syndrome.
        Placenta. 2008; 29: 734-742
        • Ziebell B.T.
        • Galan H.L.
        • Anthony R.V.
        • Regnault T.R.
        • Parker T.A.
        • Arroyo J.A.
        Ontogeny of endothelial nitric oxide synthase mRNA in an ovine model of fetal and placental growth restriction.
        Am J Obstet Gynecol. 2007; 197: e421-e425