Research Article| Volume 171, ISSUE 2, P231-234, December 2013

Cord blood B-type natriuretic peptide levels in placental insufficiency: correlation with fetal Doppler and pH at birth

Published:September 16, 2013DOI:



      To examine the correlation of cardiac B-type natriuretic peptide (BNP) concentrations in umbilical cord blood at birth with fetal Doppler parameters and pH at birth.

      Study design

      Prospective cross-sectional study with the following inclusion criteria: women with a singleton pregnancy, placental insufficiency characterized by increased pulsatility index (PI) of the umbilical artery (UA), intact membranes, and absence of fetal abnormalities. The exclusion criteria kept out cases of newborns with postnatal diagnosis of abnormality and cases in which the blood analysis was not performed. The Doppler parameters used were the UA PI, middle cerebral artery (MCA) PI, cerebroplacental ratio (CPR), and ductus venosus (DV) PI for veins (PIV), all converted into zeta scores. Blood samples were obtained from the umbilical cord immediately after delivery to measure the pH of the UA and the BNP.


      Thirty-two pregnancies with placental insufficiency were included, 21 (65%) with positive diastolic flow and 11 (35%) with absent or reversed end diastolic flow in the UA. The concentration of BNP correlated significantly with the UA PI z-score (rho = 0.43, P = 0.016), the CPR z-score (rho = −0.35, P = 0.048), the DV PIV z-score (rho = 0.61, P < 0.001), pH at birth (rho = −0.39, P = 0.031), and gestational age (rho = −0.51, P = 0.003). In the multiple regression analysis, antenatal parameters were included; the DV PIV z-score (P = 0.008) was found to be an independent parameter correlating with BNP at birth. Correlation between BNP and the DV PIV z-score was borne out by the regression equation Log[BNP] = 2.34 + 0.13*DV (F = 18.8, P < 0.001). Correlation between BNP and pH at birth was confirmed by the regression equation Log[BNP] = 21.36–2.62*pH (F = 7.69, P = 0.01).


      The results suggest that fetal cardiac dysfunction identified by BNP concentrations at birth correlated independently with changes in DV PIV and correlated negatively with pH values at birth.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


        • Levin E.R.
        • Gardner D.G.
        • Samson W.K.
        Natriuretic peptides.
        N Engl J Med. 1998; 339: 321-328
        • Daniels L.B.
        • Maisel A.S.
        Natriuretic peptides.
        J Am Coll Cardiol. 2007; 50: 2357-2368
        • Hogenhuis J.
        • Voors A.A.
        • Jaarsma T.
        • Hillege H.L.
        • Boomsma F.
        • van Veldhuisen D.J.
        Influence of age on natriuretic peptides in patients with chronic heart failure: a comparison between ANP/NT-ANP and BNP/NT-proBNP.
        Eur J Heart Fail. 2005; 7: 81-86
        • Moriichi A.
        • Cho K.
        • Mizushima M.
        • et al.
        B-type natriuretic peptide levels at birth predict cardiac dysfunction in neonates.
        Pediatr Int. 2012; 54: 89-93
        • Marsál K.
        Obstetric management of intrauterine growth restriction.
        Best Pract Res Clin Obstet Gynaecol. 2009; 23: 857-870
        • Barker D.J.P.
        Fetal origins of coronary heart disease.
        BMJ. 1995; 311: 171-174
        • Mäkikallio K.
        • Räsänen J.
        • Mäkikallio T.
        • Vuolteenaho O.
        • Huhta J.C.
        Human fetal cardiovascular profile score and neonatal outcome in intrauterine growth restriction.
        Ultrasound Obstet Gynecol. 2008; 31: 48-54
        • Mäkikallio K.
        • Vuolteenaho O.
        • Jouppila P.
        • Räsänen J.
        Ultrasonographic and biochemical markers of human fetal cardiac dysfunction in placental insufficiency.
        Circulation. 2002; 105: 2058-2063
        • Nomura R.M.
        • Cabar F.R.
        • Costa V.N.
        • Miyadahira S.
        • Zugaib M.
        Cardiac troponin T as a biochemical marker of cardiac dysfunction and ductus venosus Doppler velocimetry.
        Eur J Obstet Gynecol Reprod Biol. 2009; 147: 33-36
        • Arduini D.
        • Rizzo G.
        Normal values of pulsatility index from fetal vessels: a cross-sectional study on 1556 healthy fetuses.
        J Perinat Med. 1990; 18: 165-172
        • Baschat A.A.
        • Gembruch U.
        The cerebroplacental Doppler ratio revisited.
        Ultrasound Obstet Gynecol. 2003; 21: 124-127
        • Baschat A.A.
        Relationship between placental blood flow resistance and precordial venous Doppler indices.
        Ultrasound Obstet Gynecol. 2003; 22: 561-566
        • Ortigosa C.
        • Nomura R.M.
        • Costa V.N.
        • Miyadahira S.
        • Zugaib M.
        Fetal venous Doppler in pregnancies with placental dysfunction and correlation with pH at birth.
        J Matern Fetal Neonatal Med. 2012; 25: 2620-2624
        • Hecher K.
        • Snijders R.
        • Campbell S.
        • Nicolaides K.
        Fetal venous, intracardiac, and arterial blood flow measurements in intrauterine growth retardation: relationship with fetal blood gases.
        Am J Obstet Gynecol. 1995; 173: 10-15
        • Baschat A.A.
        • Gembruch U.
        • Reiss I.
        • Gortner L.
        • Weiner C.P.
        • Harman C.R.
        Relationship between arterial and venous Doppler and perinatal outcome in fetal growth restriction.
        Ultrasound Obstet Gynecol. 2000; 16: 407-413
        • Morris R.K.
        • Selman T.J.
        • Verma M.
        • Robson S.C.
        • Kleijnen J.
        • Khan K.S.
        Systematic review and meta-analysis of the test accuracy of ductus venosus Doppler to predict compromise of fetal/neonatal wellbeing in high risk pregnancies with placental insufficiency.
        Eur J Obstet Gynecol Reprod Biol. 2010; 152: 3-12
        • Maeda M.D.
        • Nomura R.M.
        • Niigaki J.I.
        • Francisco R.P.
        • Zugaib M.
        Influence of fetal acidemia on fetal heart rate analyzed by computerized cardiotocography in pregnancies with placental insufficiency.
        J Matern Fetal Neonatal Med. 2013; (PubMed PMID: 23650952 [Epub ahead of print])
        • Baschat A.A.
        • Gembruch U.
        • Harman C.R.
        The sequence of changes in Doppler and biophysical parameters as severe fetal growth restriction worsens.
        Ultrasound Obstet Gynecol. 2001; 18: 571-577
        • Turan S.
        • Turan O.M.
        • Berg C.
        • et al.
        Computerized fetal heart rate analysis, Doppler ultrasound and biophysical profile score in the prediction of acid-base status of growth-restricted fetuses.
        Ultrasound Obstet Gynecol. 2007; 30: 750-756
        • Bahlmann F.
        • Krummenauer F.
        • Spahn S.
        • Gallinat R.
        • Kampmann C.
        Natriuretic peptide levels in intrauterine growth-restricted fetuses with absent and reversed end-diastolic flow of the umbilical artery in relation to ductus venosus flow velocities.
        J Perinat Med. 2011; 39: 529-537
        • Bilardo C.M.
        • Wolf H.
        • Stigter R.H.
        • et al.
        Relationship between monitoring parameters and perinatal outcome in severe, early intrauterine growth restriction.
        Ultrasound Obstet Gynecol. 2004; 23: 119-125
        • Crispi F.
        • Hernandez-Andrade E.
        • Pelsers M.M.
        • et al.
        Cardiac dysfunction and cell damage across clinical stages of severity in growth-restricted fetuses.
        Am J Obstet Gynecol. 2008; 199: e1-e8
        • Chalubinski K.M.
        • Repa A.
        • Stammler-Safar M.
        • Ott J.
        Impact of Doppler sonography on intrauterine management and neonatal outcome in preterm fetuses with intrauterine growth restriction.
        Ultrasound Obstet Gynecol. 2012; 39: 293-298
        • Crispi F.
        • Gratacós E.
        Fetal cardiac function: technical considerations and potential research and clinical applications.
        Fetal Diagn Ther. 2012; 32: 47-64
        • Figueras F.
        • Puerto B.
        • Martinez J.M.
        • Cararach V.
        • Vanrell J.A.
        Cardiac function monitoring of fetuses with growth restriction.
        Eur J Obstet Gynecol Reprod Biol. 2003; 110: 159-163
        • Girsen A.
        • Ala-Kopsala M.
        • Mäkikallio K.
        • Vuolteenaho O.
        • Räsänen J.
        Cardiovascular hemodynamics and umbilical artery N-terminal peptide of proB-type natriuretic peptide in human fetuses with growth restriction.
        Ultrasound Obstet Gynecol. 2007; 29: 296-303