Higher risk of preterm birth and low birth weight following oocyte donation: A systematic review and meta-analysis

Published:September 18, 2017DOI:https://doi.org/10.1016/j.ejogrb.2017.09.015



      To perform a systematic review and meta-analysis of the known literature to assess whether the perinatal outcomes are different after oocyte donation (OD) compared to autologous oocyte (AO) in vitro fertilization (IVF) pregnancies.

      Study design

      A systematic literature search was done for studies published in English from 1980 to 2016. Studies comparing perinatal outcomes of pregnancies following fresh or frozen OD and AO IVF were included. Meta-analysis was performed using the Rev Man 5.3 software (Cochrane Collaboration) for the perinatal outcomes of PTB (<37 weeks), early PTB (<32 weeks), LBW (<2500 g), very LBW (<1500 g), and SGA (<10th centile). Six studies provided data on PTB, three studies on early PTB, five studies on LBW, four studies on very LBW and three studies on SGA after fresh embryo transfer. Two studies provided data on PTB, early PTB, LBW and very LBW after frozen embryo transfer.


      There is an increased risk of PTB following fresh embryo transfer in OD pregnancies than in AO IVF pregnancies (OR 1.45, 95% CI 1.20–1.77). If the PTB risk is assumed to be to 9% for pregnancies following AO IVF, then OD pregnancies will have a PTB risk between 10.8% and 15.9%. Similarly, the risk of LBW is higher after fresh embryo transfer in OD pregnancies than AO IVF pregnancies (OR 1.34, 95% CI 1.12–1.60). If the assumed LBW risk is 9% for AO IVF pregnancies, then OD pregnancies have a LBW risk between 10.1% and 14.4%. There is an increased risk of early PTB (OR 2.14, 95% CI 1.40–3.25) and very LBW (OR 1.51, 95% CI 1.17–1.95) in a fresh embryo transfer after OD as compared to AO IVF pregnancies.


      There appears to be a higher risk of adverse perinatal outcomes following fresh OD compared to AO IVF pregnancies.


      To read this article in full you will need to make a payment


        • Mills M.
        • Rindfuss R.R.
        • McDonald P.
        • Velde E.te.
        Why do people postpone parenthood? Reasons and social policy incentives.
        Hum Reprod Update. 2011; 17 (Force on behalf of the ER and ST): 848-860https://doi.org/10.1093/humupd/dmr026
      1. HFEA_Fertility_Trends_and_Figures_2013. pdf n.d.

        • Tigges J.
        • Godehardt E.
        • Soepenberg T.
        • Maxrath B.
        • Friol K.
        • Gnoth C.
        Determinants of cumulative ART live-birth rates in a single-center study: age, fertilization modality, and first-cycle outcome.
        Arch Gynecol Obstet. 2016; 294: 1081-1089https://doi.org/10.1007/s00404-016-4162-2
        • Leridon H.
        Can assisted reproduction technology compensate for the natural decline in fertility with age? A model assessment.
        Hum Reprod. 2004; 19: 1548-1553https://doi.org/10.1093/humrep/deh304
        • Jeve Y.B.
        • Bhandari H.M.
        Effective treatment protocol for poor ovarian response: a systematic review and meta-analysis.
        J Hum Reprod Sci. 2016; 9: 70-81https://doi.org/10.4103/0974-1208.183515
        • Nagels H.E.
        • Rishworth J.R.
        • Siristatidis C.S.
        • Kroon B.
        Androgens (dehydroepiandrosterone or testosterone) for women undergoing assisted reproduction.
        Cochr Database Syst Rev. 2015; (CD009749)https://doi.org/10.1002/14651858.CD009749.pub2
        • Pandian Z.
        • McTavish A.R.
        • Aucott L.
        • Hamilton M.P.
        • Bhattacharya S.
        Interventions for poor responders to controlled ovarian hyper stimulation (COH) in-vitro fertilisation (IVF).
        Cochr Database Syst Rev. 2010; (CD004379)https://doi.org/10.1002/14651858.CD004379.pub3
        • Mesen T.B.
        • Mersereau J.E.
        • Kane J.B.
        • Steiner A.Z.
        Optimal timing for elective egg freezing.
        Fertil Steril. 2015; 103 (e4): 1551-1556https://doi.org/10.1016/j.fertnstert.2015.03.002
        • Argyle C.E.
        • Harper J.C.
        • Davies M.C.
        Oocyte cryopreservation: where are we now?.
        Hum Reprod Update. 2016; 22: 440-449https://doi.org/10.1093/humupd/dmw007
        • Calhaz-Jorge C.
        • de Geyter C.
        • Kupka M.S.
        • de Mouzon J.
        • Erb K.
        • Mocanu E.
        • et al.
        Assisted reproductive technology in Europe, 2012: results generated from European registers by ESHRE.
        Hum Reprod. 2016; 31: 1638-1652https://doi.org/10.1093/humrep/dew151
        • Toner J.P.
        • Grainger D.A.
        • Frazier L.M.
        Clinical outcomes among recipients of donated eggs: an analysis of the U.S. national experience, 1996–1998.
        Fertil Steril. 2002; 78: 1038-1045
        • Nelson S.M.
        • Telfer E.E.
        • Anderson R.A.
        The ageing ovary and uterus: new biological insights.
        Hum Reprod Update. 2013; 19: 67-83https://doi.org/10.1093/humupd/dms043
        • Shufaro Y.
        • Schenker J.G.
        The risks and outcome of pregnancy in an advanced maternal age in oocyte donation cycles.
        J Mater Fetal Neonatal Med. 2014; 27: 1703-1709https://doi.org/10.3109/14767058.2013.871702
        • Pinborg A.
        • Wennerholm U.B.
        • Romundstad L.B.
        • Loft A.
        • Aittomaki K.
        • Soderstrom-Anttila V.
        • et al.
        Why do singletons conceived after assisted reproduction technology have adverse perinatal outcome? Systematic review and meta-analysis.
        Hum Reprod Update. 2013; 19: 87-104https://doi.org/10.1093/humupd/dms044
        • Jeve Y.B.
        • Potdar N.
        • Opoku A.
        • Khare M.
        Three-arm age-matched retrospective cohort study of obstetric outcomes of donor oocyte pregnancies.
        Int J Gynecol Obstet. 2016; 133: 156-158https://doi.org/10.1016/j.ijgo.2015.09.024
        • Gundogan F.
        • Bianchi D.W.
        • Scherjon S.A.
        • Roberts D.J.
        Placental pathology in egg donor pregnancies.
        Fertil Steril. 2010; 93: 397-404https://doi.org/10.1016/j.fertnstert.2008.12.144
        • Gibbons W.E.
        • Cedars M.
        • Ness R.B.
        Toward understanding obstetrical outcome in advanced assisted reproduction: varying sperm, oocyte, and uterine source and diagnosis.
        Fertil Steril. 2011; 95 (e1): 1645-1649https://doi.org/10.1016/j.fertnstert.2010.11.029
      2. M Kamath, B Antonisamy, S Sunkara, Perinatal outcomes following oocyte donation versus autologous IVF: analysis of 99, 111 singleton live births. Abstr 32nd Annu Meet ESHRE Hels Finl 3 July −6 July 2016 2016.

        • Corradetti A.
        • Talebi Chahvar S.
        • Biondini V.
        • Giannubilo S.R.
        • Tranquilli A.L.
        PP093 Maternal and fetal outcomes in oocyte donor pregnancies.
        Pregnancy Hypertens. 2012; 2: 290-291https://doi.org/10.1016/j.preghy.2012.04.204
        • Stoop D.
        • Baumgarten M.
        • Haentjens P.
        • Polyzos N.P.
        • De Vos M.
        • Verheyen G.
        • et al.
        Obstetric outcome in donor oocyte pregnancies: a matched-pair analysis.
        Reprod Biol Endocrinol RBE. 2012; 10: 42https://doi.org/10.1186/1477-7827-10-42
        • Maheshwari A.
        • Pandey S.
        • Shetty A.
        • Hamilton M.
        • Bhattacharya S.
        Obstetric and perinatal outcomes in singleton pregnancies resulting from the transfer of frozen thawed versus fresh embryos generated through in vitro fertilization treatment: a systematic review and meta-analysis.
        Fertil Steril. 2012; 98 (e1-9): 368-377https://doi.org/10.1016/j.fertnstert.2012.05.019
        • Zegers-Hochschild F.
        • Adamson G.D.
        • de Mouzon J.
        • Ishihara O.
        • Mansour R.
        • Nygren K.
        • et al.
        International committee for monitoring assisted reproductive technology (ICMART) and the world health organization (WHO) revised glossary of ART terminology, 2009∗.
        Fertil Steril. 2009; 92: 1520-1524https://doi.org/10.1016/j.fertnstert.2009.09.009
        • Robson S.
        • Martin W.
        • Morris R.
        The Investigation and Management of the Small–for–Gestational–Age Fetus. RCOG Green-Top Guidel No 31.
        • Trounson A.
        • Leeton J.
        • Besanko M.
        • Wood C.
        • Conti A.
        Pregnancy established in an infertile patient after transfer of a donated embryo fertilised in vitro.
        Br Med J Clin Res Ed. 1983; 286: 835-838
        • Lutjen P.
        • Trounson A.
        • Leeton J.
        • Findlay J.
        • Wood C.
        • Renou P.
        The establishment and maintenance of pregnancy using in vitro fertilization and embryo donation in a patient with primary ovarian failure.
        Nature. 1984; 307: 174-175
      3. CASP Tools & Checklists. Crit Apprais Ski Programme CASP n.d. http://www.casp-uk.net/casp-tools-checklists (Accessed January 25, 2017).

        • Dude A.M.
        • Yeh J.S.
        • Muasher S.J.
        Donor oocytes are associated with preterm birth when compared to fresh autologous in vitro fertilization cycles in singleton pregnancies.
        Fertil Steril. 2016; 106: 660-665https://doi.org/10.1016/j.fertnstert.2016.05.029
        • Baker V.L.
        • Brown M.B.
        • Luke B.
        • Conrad K.P.
        Association of number of retrieved oocytes with live birth rate and birth weight: an analysis of 231, 815 cycles of in vitro fertilization.
        Fertil Steril. 2015; 103 (e2): 931-938https://doi.org/10.1016/j.fertnstert.2014.12.120
        • Marino J.L.
        • Moore V.M.
        • Willson K.J.
        • Rumbold A.
        • Whitrow M.J.
        • Giles L.C.
        • et al.
        Perinatal outcomes by mode of assisted conception and sub-Fertility in an australian data linkage cohort.
        PLoS One. 2014; 9: e80398https://doi.org/10.1371/journal.pone.0080398
        • Nejdet S.
        • Bergh C.
        • Källén K.
        • Wennerholm U.-B.
        • Thurin-Kjellberg A.
        High risks of maternal and perinatal complications in singletons born after oocyte donation.
        Acta Obstet Gynecol Scand. 2016; 95: 879-886https://doi.org/10.1111/aogs.12904
        • Zegers-Hochschild F.
        • Masoli D.
        • Schwarze J.-E.
        • Iaconelli A.
        • Borges E.
        • Pacheco I.M.
        Reproductive performance in oocyte donors and their recipients: comparative analysis from implantation to birth and lactation.
        Fertil Steril. 2010; 93: 2210-2215https://doi.org/10.1016/j.fertnstert.2009.01.068
        • Jeve Y.
        • Potdar N.
        • Opoku A.
        • Khare M.
        Donor oocyte conception and pregnancy complications: a systematic review and meta-analysis.
        BJOG Int J. Obstet Gynaecol. 2016; 123: 1471-1480https://doi.org/10.1111/1471-0528.13910
        • Storgaard M.
        • Loft A.
        • Bergh C.
        • Wennerholm U.
        • Söderström-Anttila V.
        • Romundstad L.
        • et al.
        Obstetric and neonatal complications in pregnancies conceived after oocyte donation − a systematic review and meta-analysis.
        BJOG Int J Obstet Gynaecol. 2016; https://doi.org/10.1111/1471-0528.14257
        • Pinborg A.
        • Henningsen A.A.
        • Loft A.
        • Malchau S.S.
        • Forman J.
        • Andersen A.N.
        Large baby syndrome in singletons born after frozen embryo transfer (FET): is it due to maternal factors or the cryotechnique?.
        Hum Reprod. 2014; 29: 618-627https://doi.org/10.1093/humrep/det440
        • Maheshwari A.
        • Raja E.A.
        • Bhattacharya S.
        Obstetric and perinatal outcomes after either fresh or thawed frozen embryo transfer: an analysis of 112,432 singleton pregnancies recorded in the Human Fertilisation and Embryology Authority anonymized dataset.
        Fertil Steril. 2016; 106: 1703-1708https://doi.org/10.1016/j.fertnstert.2016.08.047
        • Imudia A.N.
        • Awonuga A.O.
        • Doyle J.O.
        • Kaimal A.J.
        • Wright D.L.
        • Toth T.L.
        • et al.
        Peak serum estradiol level during controlled ovarian hyperstimulation is associated with increased risk of small for gestational age and preeclampsia in singleton pregnancies after in vitro fertilization.
        Fertil Steril. 2012; 97: 1374-1379https://doi.org/10.1016/j.fertnstert.2012.03.028
        • Pereira N.
        • Reichman D.E.
        • Goldschlag D.E.
        • Lekovich J.P.
        • Rosenwaks Z.
        Impact of elevated peak serum estradiol levels during controlled ovarian hyperstimulation on the birth weight of term singletons from fresh IVF-ET cycles.
        J Assist Reprod Genet. 2015; 32: 527-532https://doi.org/10.1007/s10815-015-0434-1
        • Sunkara S.K.
        • La Marca A.
        • Seed P.T.
        • Khalaf Y.
        Increased risk of preterm birth and low birthweight with very high number of oocytes following IVF: an analysis of 65 868 singleton live birth outcomes.
        Hum Reprod Oxf Engl. 2015; 30: 1473-1480https://doi.org/10.1093/humrep/dev076
        • Levron Y.
        • Dviri M.
        • Segol I.
        • Yerushalmi G.M.
        • Hourvitz A.
        • Orvieto R.
        • et al.
        The ‘immunologic theory’ of preeclampsia revisited: a lesson from donor oocyte gestations.
        Am J Obstet Gynecol. 2014; 211 (e1-383. e5): 383https://doi.org/10.1016/j.ajog.2014.03.044
        • Schonkeren D.
        • Swings G.
        • Roberts D.
        • Claas F.
        • de Heer E.
        • Scherjon S.
        Pregnancy close to the edge: an immunosuppressive infiltrate in the chorionic plate of placentas from uncomplicated egg cell donation.
        PLoS One. 2012; 7: e32347https://doi.org/10.1371/journal.pone.0032347
        • McMaster M.T.
        • Zhou Y.
        • Fisher S.J.
        Abnormal placentation and the syndrome of preeclampsia.
        Semin Nephrol. 2004; 24: 540-547