Advertisement

Obesity and breast cancer in premenopausal women: Current evidence and future perspectives

      Abstract

      There is raising evidence reporting an increased incidence of breast cancer over the past decades. Every year approximately 1.4 million new cases of breast cancer are diagnosed worldwide, with a mortality rate of approximately 450,000/year. Out of these cases, 6.6% are diagnosed in premenopausal women with a median age at diagnosis of 40 years: in premenopausal women breast cancer seems to be more aggressive than in post-menopausal women. Obesity has been reported to increase the risk of developing breast cancer and to worsen the prognosis. This seems to be due to several obesity-related mechanisms. Insulin resistance that often occurs with obesity may results in compensatory hyperinsulinemia. Insulin cross-binds insulin-like growth factor-I receptors expressed on breast cells, resulting in proliferative stimuli on breast cancer cells. Besides, hyperinsulinemia up-regulates the growth hormone receptor (GHR) thus increasing GHR stimulation and resulting in an increased hepatic IGF-I synthesis. Moreover, insulin decreases the hepatic expression of binding proteins of IGF-I, such as insulin-like growth factor binding proteins (IGFBP)-1 and IGFBP-2, thus leading to high circulating and bioavailable free IGF-I. Additionally, obesity is associated to chronic low-grade inflammation that has been reported to be an additional stimulus for tumor growth. This review shows the current evidence regarding to the association of obesity and breast cancer in premenopausal state focusing on both human and basic studies; showing that the obesity is a risk factor for breast cancer also among premenopausal women, especially for the molecular subtype Triple Negative Breast Cancer.

      Abbreviations:

      BC (breast cancer), BMI (body mass index), TNBC (Triple Negative Breast Cancer), GHR (growth hormone receptor), IGF-1 (insulin-like growth factor-I IGFBP Factor Binding Protein), ER (estrogenreceptor), IL (interleukin), NF-kB (nuclear factor-kappa B), MMP-9 (metalloproteinase-9), MCP-1 (monocyte chemoattractant protein-1), HIF-1 (hypoxia inducible factor-1), PI3K (phosphatidylinositol 3-kinase), Akt (protein kinase B), MAPK (mitogen-activated protein kinase), VEGF (vascular endothelial growth factor)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      References

        • Eccles S.A.
        • Aboagye E.O.
        • Ali S.
        • Anderson A.S.
        • Armes J.
        • Berditchevski F.
        • et al.
        Critical research gaps and translation alpriorities for the successful prevention and treatment of breast cancer.
        Breast Cancer Res. 2013; 15: R92
        • Arnold M.
        • Karim-Kos H.E.
        • Coebergh J.W.
        • Byrnes G.
        • Antilla A.
        • Ferlay J.
        • et al.
        Recent trends in incidence of five common cancers in 26 European countries since 1988: analysis of the European Cancer Observatory.
        Eur J Cancer. 2015; 51: 1164-1187
        • Rahib L.
        • Smith B.D.
        • Aizenberg R.
        • Rosenzweig A.B.
        • Fleshman J.M.
        • Matrisian L.M.
        Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States.
        Cancer Res. 2014; 74: 2913-2921
        • Colditz G.A.
        • Bohlke K.
        Priorities for the primary prevention of breast cancer.
        CA Cancer J Clin. 2014; 64: 186-194
        • Botrel T.E.
        • Paladini L.
        • Clark O.A.
        Lapatinib plus chemotherapy or endocrine therapy (CET) versus CET alone in the treatment of HER2 overexpressinglocallyadvanced or metastaticbreastcancer: systematicreview and meta–analysis.
        Core Evid. 2013; 8: 69-78
        • Ferlay J.
        • Shin H.R.
        • Bray F.
        • Forman D.
        • Mathers C.
        • Parkin D.M.
        Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008.
        Int J Cancer. 2010; 12
        • Narod S.A.
        Breast cancer in young women.
        Nat Rev Clin Oncol. 2012; 9: 460-470
        • Azim Jr, H.A.
        • Partridge A.H.
        Biology of breast cancer in young women.
        Breast Cancer Res. 2014; 16: 427
        • Collins L.C.
        • Marotti J.D.
        • Gelber S.
        Pathologic features and molecular phenotype by patient age in a large cohort of young women with breast cancer.
        Breast Cancer Res Treat. 2012; 131: 1061-1066
        • Voogd A.C.
        • Nielsen M.
        • Peterse J.L.
        Differences in risk factors for local and distant recurrence after breast-conserving therapy or mastectomy for stage I and II breast cancer: pooled results of two large European randomized trials.
        J Clin Oncol. 2001; 19: 1688-1697
        • Metcalfe K.
        • Lubinski J.
        • Lynch H.T.
        • Ghadirian P.
        • Foulkes W.D.
        • Kim-Sing C.
        • et al.
        Family history of cancer and cancer risks in women with BRCA1 or BRCA2 mutations.
        J Natl Cancer Inst. 2010; 102: 1874-1878
        • Collaborative Group on Hormonal Factors in Breast Cancer
        Menarche, menopause, and breast cancer risk: individual participant meta-analysis, including 118 964 women with breast cancer from 117 epidemiological studies.
        Lancet Oncol. 2012; 13: 1141-1151
        • Gierisch J.M.
        • Coeytaux R.R.
        • Urrutia R.P.
        • Havrilesky L.J.
        • Moorman P.G.
        • Lowery W.J.
        • et al.
        Oral contraceptive use and risk of breast, cervical, colorectal, and endometrial cancers: a systematic review.
        Cancer Epidemiol Biomark Prev. 2013; 22: 1931-1943
        • Ritte R.
        • Tikk K.
        • Lukanova A.
        • Tjonneland A.
        • Olsen A.
        • Overvad K.
        • et al.
        Reproductive factors and risk of hormone receptor positive and negative breast cancer: a cohort study.
        BMC Cancer. 2013; 13: 584
        • Rice M.S.
        • Eliassen A.H.
        • Hankinson S.E.
        • Lenart E.B.
        • Willett W.C.
        • Tamimi R.M.
        Breast cancer research in the nurses' HealthStudies: exposuresAcross the life course.
        Am J Public Health. 2016; 106: 1592-1598
        • Castello A.
        • Martín M.
        • Ruiz A.
        Lower Breast cancer risk among women following the world cancer research fund and american institute for cancer research lifestyle recommendations: epiGEICAM case-control study.
        PLoS One. 2015; 10: e0126096
        • Vona-Davis L.
        • Rose D.P.
        Type 2 diabetes and obesity metabolic interactions: common factors for breast cancer risk and novel approaches to prevention and therapy.
        Curr Diabetes Rev. 2012; 8: 116-130
        • Lashinger L.M.
        • Ford N.A.
        • Hursting S.D.
        Interacting inflammatory and growth signals underlie the obesity-cancer link.
        J Nutr. 2014; 144: 109-113
        • White A.J.
        • Nichols H.B.
        • Bradshaw P.T.
        • Sandler D.P.
        Overall and central adiposity and breast cancer risk in the Sister Study.
        Cancer. 2015; 121: 3700-3708
        • Neuhouser M.L.
        • Aragaki A.K.
        • Prentice R.L.
        • Manson J.E.
        • Chlebowski R.
        • Carty C.L.
        • et al.
        Overweight, obesity, and postmenopausal invasive breast cancer risk: a secondary analysis of the Women’s Health Initiative randomized clinical trials.
        JAMA Oncol. 2015; 1: 611-621
        • Sebastiani F.
        • Cortesi L.
        • Sant M.
        • Lucarini V.
        • Cirilli C.
        • De Matteis E.
        • et al.
        Increased incidence of breast cancer in postmenopausal women with high body mass index at the Modena Screening Program.
        J Breast Cancer. 2016; 19: 283-291
        • Michels K.B.
        • Terry K.L.
        • Willett W.C.
        Longitudinal study on the role of body size in premenopausal breast cancer.
        Arch Intern Med. 2006; 166: 2395-2402
        • Cecchini R.S.
        • Costantino J.P.
        • Cauley J.A.
        • Cronin W.M.
        • Wickerham D.L.
        • Land S.R.
        • et al.
        Body mass index and the risk for developing invasive breast cancer among high-risk women in NSABP P-1 and STAR breast cancer prevention trials.
        Cancer Prev Res (Phila). 2012; 5: 583-592
        • Kawai M.
        • Malone K.E.
        • Tang M.T.
        • Li C.I.
        Height, body mass index (BMI), BMI change, and the risk of estrogen receptor positive, HER2-positive, and triple-negative breast cancer among women ages 20 to 44 years.
        Cancer. 2014; 120: 1548-1556
        • Sahin S.
        • Erdem G.U.
        • Karatas F.
        • Aytekin A.
        • Sever A.R.
        • Ozisik Y.
        • et al.
        The association between body mass index and immunohistochemical subtypes in breast cancer.
        Breast. 2017; 32: 227-236
        • Chen L.
        • Cook L.S.
        • Tang M.T.
        • Porter P.L.
        • Hill D.A.
        • Wiggins C.L.
        • et al.
        Body mass index and risk of luminal, HER2-overexpressing, and triple negative breast cancer.
        Breast Cancer Res Treat. 2016; 157: 545-554
        • Dolle J.M.
        • Daling J.R.
        • White E.
        • et al.
        Risk factors for triple-negative breast cancer in women under the age of 45 years.
        Cancer Epidemiol Biomark Prev. 2009; 18: 1157-1166
        • Gaudet M.M.
        • Press M.F.
        • Haile R.W.
        • Lynch C.F.
        • Glaser S.L.
        • Schildkraut J.
        • et al.
        Risk factors by molecular subtypes of breast cancer across a population-based study of women 56 years or younger.
        Breast Cancer Res Treat. 2011; 130: 587597
        • Yang X.R.
        • Chang-Claude J.
        • Goode E.L.
        • Couch F.J.
        • Nevanlinna H.
        • Milne R.L.
        • et al.
        Associations of breast cancer risk factors with tumor subtypes: a pooled analysis from the Breast Cancer Association Consortium studies.
        J Natl Cancer Inst. 2011; 103: 250e63
        • Van Gemert W.A.
        • Monninkhof E.M.
        • May A.M.
        • Elias S.G.
        • van der Palen J.
        • Veldhuis W.
        • et al.
        Association between changes in fat distribution and biomarkers for breast cancer.
        Endocr Relat Cancer. 2017; 24: 297-305
        • Holly R.H.
        • Walter C.W.
        • Kathryn L.T.
        • Karin B.M.
        Body fat distribution and risk of premenopausal Breast cancer in the nurses’ health study II.
        J Natl Cancer Inst. 2011; 103: 273-278
        • Simpson E.R.
        Aromatase: biologic relevance of tissue-specific expression.
        Semin Reprod Med. 2004; 22: 11-23
        • Polotsky A.J.
        • Hailpern S.M.
        • Skurnick J.H.
        • Lo J.C.
        • Sternfeld B.
        • Santoro N.
        Association of adolescent obesity and lifetime nulliparity-the study of women’s health across the nation (SWAN).
        Fertil Steril. 2010; 93: 2004-2011
        • Jain A.
        • Polotsky A.J.
        • Rochester D.
        • Berga S.L.
        • Loucks T.
        • Zeitlian G.
        • et al.
        Pulsatile luteinizing hormone amplitude and progesterone metabolite excretion are reduced in obese women.
        J Clin Endocrinol Metab. 2007; 92: 2468-2473
        • Lanari C.
        • Molinolo A.A.
        Progesterone receptors–animal models and cell signalling in breast cancer. Diverse activation pathways for the progesterone receptor: possible implications for breast biology and cancer.
        Breast Cancer Res. 2002; 4: 240-243
        • Campagnoli C.
        • Abba C.
        • Ambroggio S.
        • Peris C.
        Pregnancy, progesterone and progestins in relation to breast cancer risk.
        J Steroid Biochem Mol Biol. 2005; 97: 441-450et
        • Doisneau-Sixou S.F.
        • Sergio C.M.
        • Carroll J.S.
        • Hui R.
        • Musgrove E.A.
        • Sutherland R.L.
        Estrogen and antiestrogen regulation of cell cycle progression in breast cancer cells.
        Endocr Relat Cancer. 2003; 10: 179-186
        • Kaaks R.
        • Berrino F.
        • Key T.
        • Rinaldi S.
        • Dossus L.
        • Biessy C.
        • et al.
        Serum sex steroids in premenopausal women and breast cancer risk within the European Propsective Investigation into Cancer and Nutrition (EPIC).
        J Natl Cancer Inst. 2005; 97: 755-765
        • Schernhammer E.S.
        • Sperati F.
        • Razavi P.
        • et al.
        Endogenous sex steroids in premenopausal women and risk of breast cancer: the ORDET cohort.
        Breast Cancer Res. 2013; 15: R46
        • Muti P.
        • Quattrin T.
        • Grant B.J.
        • Krogh V.
        • Micheli A.
        • Schünemann H.J.
        • et al.
        Fasting glucose is a risk factor for breast cancer: a prospective study.
        Cancer Epidemiol Biomark Prev. 2002; 11: 1361-1368
        • Schairer C.
        • Hill D.
        • Sturgeon S.R.
        • Fears T.
        • Pollak M.
        • Mies C.
        • et al.
        Serum concentrations of IGF-I, IGFBP-3 and c-peptide and risk of hyperplasia and cancer of the breast in postmenopausal women.
        Int J Cancer. 2004; 108: 773-779
        • Michels K.B.
        • Solomon C.G.
        • Hu F.B.
        • Rosner B.A.
        • Hankinson S.E.
        • Colditz G.A.
        • et al.
        Type 2 diabetes and subsequent incidence of breast cancer in the Nurses’ Health Study.
        Diabetes Care. 2003; 26: 1752-1758
        • Goodwin P.J.
        • Ennis M.
        • Pritchard K.I.
        • Trudeau M.E.
        • Koo J.
        • Madarnas Y.
        • et al.
        Fasting insulin and outcome in early-stage breast cancer: results of a prospective cohort study.
        J Clin Oncol. 2002; 20: 42-51
        • Gunter M.J.
        • Hoover D.R.
        • Yu H.
        • Wassertheil-Smoller S.
        • Rohan T.E.
        • Manson J.E.
        • et al.
        Insulin, insulin-like growth factor-I, and risk of breast cancer in post-menopausal women.
        J Natl Cancer Inst. 2009; 101: 48-60
        • Gunter M.J.
        • Hoover D.R.
        • Yu H.
        • Wassertheil-Smoller S.
        • Manson J.E.
        • Li J.
        • et al.
        A prospective evaluation of insulin and insulin-like growth factor-I as risk factors for endometrial cancer.
        Cancer Epidemiol Biomark Prev. 2008; 17: 921-929
        • Humpert P.M.
        • Djuric Z.
        • Zeuge U.
        • Oikonomou D.
        • Seregin Y.
        • Laine K.
        • et al.
        Insulin stimulates the clonogenic potential of angiogenic endothelial progenitor cells by IGF-1 receptor-dependent signaling.
        Mol Med. 2008; 14: 301-308
        • Parekh N.
        • Guffanti G.
        • Lin Y.
        • Ochs-Balcom H.M.
        • Makarem N.
        • Hayes R.
        Insulin receptor variants and obesity-related cancers in the Framingham heart study.
        Cancer Causes Control. 2015; 26: 1189-1195
        • Argiles J.M.
        • López-Soriano F.J.
        Insulin and cancer (review).
        Int J Oncol. 2001; 18: 683-687
        • Arcidiacono B.
        • Iiritano S.
        • Nocera A.
        • Possidente K.
        • Nevolo M.T.
        • Ventura V.
        • et al.
        Insulin resistance and cancer risk: an overview of the pathogenetic mechanisms.
        Exp Diabet Res. 2012; 2012: 789174
        • Gallagher E.J.
        • LeRoith D.
        The proliferating role of insulin and insulin-like growth factors in cancer.
        Trends Endocrinol Metab. 2010; 21 (53): 610-618
        • Renehan A.G.
        • Frystyk J.
        • Flyvbjerg A.
        Obesity and cancer risk: the role of the insulin-IGF axis.
        Trends Endocrinol Metab. 2006; 17: 328-336
        • Héron-Milhavet L.
        • LeRoith D.
        Insulin-like growth factor I induces MDM2-dependent degradation of p53 via the p38 MAPK pathway in response to DNA damage.
        J Biol Chem. 2002; 277: 15600-15606
        • Zhang X.
        • Yee D.
        Insulin-like growth factor binding protein-1 (IGFBP-1) inhibits Breast cancer cell motility.
        Cancer Res. 2002; 62: 4369-4375
        • Lu S.
        • Archer M.C.
        Insulin-like growth factor binding protein-1 over-expression in transgenic mice inhibits hepatic preneoplasia.
        Mol Carcinog. 2003; 36: 142-146
        • Divella R.
        • De Luca R.
        • Abbate I.
        • Naglieri E.
        • Daniele A.
        Obesity and cancer: the role of adipose tissue and adipo-cytokines-induced chronic inflammation.
        J Cancer. 2016; 7: 2346-2359
        • Lashinger L.M.
        • Ford N.A.
        • Hursting S.D.
        Interacting inflammatory and growth signals underlie the obesity-cancer link.
        J Nutr. 2014; 144: 109-113
        • Zhang Y.
        • Nowicka A.
        • Solley T.N.
        • Wei C.
        • Parikh A.
        • Court L.
        • et al.
        Stromal cells derived from visceral and obese adipose tissue promote growth of ovarian cancers.
        PLoS One. 2015; 10: e0136361
        • Jung Y.Y.
        • Lee Y.K.
        • Koo J.S.
        Expression of cancer-associated fibroblast-related proteins in adipose stroma of breast cancer.
        Tumour Biol. 2015; 36: 8685-8695
        • Booth A.
        • Magnuson A.
        • Fouts J.
        • Foster M.
        Adipose tissue, obesity and adipokines: role in cancer promotion.
        Horm Mol Biol Clin Investig. 2015; 21: 57-74
        • Park E.J.
        • Lee J.H.
        • Yu G.Y.
        • He G.
        • Ali S.R.
        • Holzer R.G.
        • et al.
        Dietary and genetic obesity promote liver inflammation and tumor genesis by enhancing IL-6 and TNF expression.
        Cell. 2010; 140: 197-208
        • Engin A.
        Adipose tissue hypoxia in obesity and its impact on preadipocytes and macrophages: hypoxia hypothesis.
        Adv Exp Med Biol. 2017; 960: 305-326
        • Wood I.S.
        • de Heredia F.P.
        • Wang B.
        • Trayhurn P.
        Cellular hypoxia and adipose tissue dysfunction in obesity.
        Proc Nutr Soc. 2009; 68: 370-377
        • Halberg N.
        • Khan T.
        • Trujillo M.E.
        • et al.
        Hypoxia-inducible factor 1αinduces fibrosis and insulin resistance in white adipose tissue.
        Mol Cell Biol. 2009; 29: 4467-4483
        • Cao Y.
        Angiogenesis and vascular functions in modulation of obesity, adipose metabolism, and insulin sensitivity.
        Cell Metab. 2013; 18: 478-489
        • Trayhurn P.
        • Alomar S.Y.
        Oxygen deprivation and the cellular response to hypoxia in adipocytes – perspectives on white and brown adipose tissues in obesity.
        Front Endocrinol (Lausanne). 2015; 6: 19
        • Closa D.
        • Folch-Puy E.
        Oxygen free radicals and the systemic inflammatory response.
        IUBMB Life. 2004; 56: 185-191
        • Trayhurn P.
        Hypoxia and adipocyte physiology: implications for adipose tissue dysfunction in obesity.
        Annu Rev Nutr. 2014; 34: 207-236
        • Khan S.
        • Shukla S.
        • Sinha S.
        • Meeran S.M.
        Role of adipokines and cytokines in obesity-associated breast cancer: therapeutic targets.
        Cytokine Growth Factor Rev. 2013; 24: 503-513
        • Nakayama S.
        • Miyoshi Y.
        • Ishihara H.
        • Noguchi S.
        Growth-inhibitory effect of adiponectin via adiponectin receptor 1 on human breast cancer cells through inhibition of S-phase entry without inducing apoptosis.
        Breast Cancer Res Treat. 2008; 112: 405-410
        • Körner A.
        • Pazaitou-Panayiotou K.
        • Kelesidis T.
        • Kelesidis I.
        • Williams C.J.
        • Kaprara A.
        • et al.
        Total and high-molecular-weight adiponectin in breast cancer: in vitro and in vivo studies.
        J Clin Endocrinol Metab. 2007; 92: 1041-1048
        • Hebbard L.
        • Ranscht B.
        Multifaceted roles of adiponectin in cancer.
        Best Pract Res Clin Endocrinol Metab. 2014; 28: 59-69
        • Münzberg H.
        • Morrison C.D.
        Structure, production and signaling of leptin.
        Metabolism. 2015; 64: 13-23
        • Booth A.
        • Magnuson A.
        • Fouts J.
        • Foster M.
        Adipose tissue, obesity and adipokines: role in cancer promotion.
        Horm Mol Biol Clin Investig. 2015; 21: 57-74