Advertisement
Review article| Volume 253, P191-197, October 2020

Relationship between adenomyosis and endometriosis; Different phenotypes of a single disease?

      Abstract

      Adenomyosis and endometriosis are common gynecological disorders, but their pathophysiology is still under debate. The aim of this review is to discuss whether adenomyosis and endometriosis represent two different entities or different phenotypes of a single disease. We searched PubMed electronic databases published between January 2000 and April 2020. Endometriosis is classified into three phenotypes; superficial peritoneal disease (SUP), ovarian endometrioma (OMA) and deep infiltrating endometriosis (DIE) lesions. Adenomyosis presents several different subtypes, including intrinsic adenomyosis, extrinsic adenomyosis, adenomyosis externa and focal adenomyosis located in the outer myometrium (FAOM). Human uterus is embryologically composed of archimetra, originating from the Müllerian duct, and neometra, arising from the non-Müllerian duct, and adenomyosis and endometriosis are diseases of archimetra. The outer myometrial layer of the uterus is composed of highly differentiated smooth muscle cells (SMCs), while the inner myometrial cells are immature. Inappropriate uterine contractions can cause retrograde menstruation and chronic inflammation in the pelvic cavity, then influencing the development of pelvic endometriosis. Furthermore, hyperperistalsis results in physiological and pathological changes to the endometrial-myometrial junctional barrier, allowing invagination of the normal endometrial tissue into the inner myometrial layer. This can trigger the development of intrinsic adenomyosis. There are insufficient data available to draw conclusions, but extrinsic adenomyosis may result from pelvic endometriosis and FAOM from rectal and bladder DIE/adenomyosis externa. In conclusions, this paper contributes to the debate in the possibility that adenomyosis and endometriosis represent different phenotypes of a single disease.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      References

        • Tosti C.
        • Pinzauti S.
        • Santulli P.
        • Chapron C.
        • Petraglia F.
        Pathogenetic mechanisms of deep infiltrating endometriosis.
        Reprod Sci. 2015; 22: 1053-1059
        • Benagiano G.
        • Brosens I.
        • Habiba M.
        Structural and molecular features of the endomyometrium in endometriosis and adenomyosis.
        Hum Reprod Update. 2014; 20: 386-402
        • Donnez J.
        • Nisolle M.
        • Smoes P.
        • Gillet N.
        • Beguin S.
        • Casanas-Roux F.
        Peritoneal endometriosis and “endometriotic” nodules of the rectovaginal septum are two different entities.
        Fertil Steril. 1996; 66: 362-368
        • Weiss G.
        • Maseelall P.
        • Schott L.L.
        • Brockwell S.E.
        • Schocken M.
        • Johnston J.M.
        Adenomyosis a variant, not a disease? Evidence from hysterectomized menopausal women in the Study of Women’s Health Across the Nation (SWAN).
        Fertil Steril. 2009; 91: 201-206
        • Kishi Y.
        • Suginami H.
        • Kuramori R.
        • Yabuta M.
        • Suginami R.
        • Taniguchi F.
        Four subtypes of adenomyosis assessed by magnetic resonance imaging and their specification.
        Am J Obstet Gynecol. 2012; 207 (e1-7): 114
        • Sofic A.
        • Husic-Selimovic A.
        • Carovac A.
        • Jahic E.
        • Smailbegovic V.
        • Kupusovic J.
        The significance of MRI evaluation of the uterine junctional zone in the early diagnosis of adenomyosis.
        Acta Inform Med. 2016; 24: 103-106
        • Guo S.W.
        The pathogenesis of adenomyosis vis-à-vis endometriosis.
        J Clin Med. 2020; 9: 485
        • Chapron C.
        • Tosti C.
        • Marcellin L.
        • Bourdon M.
        • Lafay-Pillet M.C.
        • Millischer A.E.
        • et al.
        Relationship between the magnetic resonance imaging appearance of adenomyosis and endometriosis phenotypes.
        Hum Reprod. 2017; 32: 1393-1401
        • Yen C.F.
        • Huang S.J.
        • Lee C.L.
        • Wang H.S.
        • Liao S.K.
        Molecular characteristics of the endometrium in uterine adenomyosis and its biochemical microenvironment.
        Reprod Sci. 2017; 24: 1346-1361
        • Koninckx P.R.
        • Ussia A.
        • Adamyan L.
        • Wattiez A.
        • Gomel V.
        • Martin D.C.
        Pathogenesis of endometriosis: the genetic/epigenetic theory.
        Fertil Steril. 2019; 111: 327-340
        • Vannuccini S.
        • Tosti C.
        • Carmona F.
        • Huang S.J.
        • Chapron C.
        • Guo S.W.
        • et al.
        Pathogenesis of adenomyosis: an update on molecular mechanisms.
        Reprod Biomed Online. 2017; 35: 592-601
        • García-Solares J.
        • Donnez J.
        • Donnez O.
        • Dolmans M.M.
        Pathogenesis of uterine adenomyosis: invagination or metaplasia?.
        Fertil Steril. 2018; 109: 371-379
        • Kurita T.
        Normal and abnormal epithelial differentiation in the female reproductive tract.
        Differentiation. 2011; 82: 117-126
        • Moncada-Madrazo M.
        • Rodríguez Valero C.
        Embryology, uterus.
        StatPearls [Internet]. Treasure Island (FL). StatPearls Publishing, 2019 (Sep 20 2020 Jan)
        • Leyendecker G.
        • Kunz G.
        • Noe M.
        • Herbertz M.
        • Mall G.
        Endometriosis: a dysfunction and disease of the archimetra.
        Hum Reprod Update. 1998; 4: 752-762
        • Mehasseb M.K.
        • Bell S.C.
        • Brown L.
        • Pringle J.H.
        • Habiba M.
        Phenotypic characterisation of the inner and outer myometrium in normal and adenomyotic uteri.
        Gynecol Obstet Invest. 2011; 71: 217-224
        • Kido A.
        • Togashi K.
        Uterine anatomy and function on cine magnetic resonance imaging.
        Reprod Med Biol. 2016; 15: 191-199
        • Myers K.M.
        • Elad D.
        Biomechanics of the human uterus.
        Wiley Interdiscip Rev Syst Biol Med. 2017; 9
        • Kishi Y.
        • Shimada K.
        • Fujii T.
        • Uchiyama T.
        • Yoshimoto C.
        • Konishi N.
        • et al.
        Phenotypic characterization of adenomyosis occurring at the inner and outer myometrium.
        PLoS One. 2017; 12e0189522
        • Lyons E.A.
        • Taylor P.J.
        • Zheng X.H.
        • Ballard G.
        • Levi C.S.
        • Kredentser J.V.
        Characterization of subendometrial myometrial contractions throughout the menstrual cycle in normal fertile women.
        Fertil Steril. 1991; 55: 771-774
        • Kunz G.
        • Beil D.
        • Huppert P.
        • Leyendecker G.
        Control and function of uterine peristalsis during the human luteal phase.
        Reprod Biomed Online. 2006; 13: 528-540
        • Benagiano G.
        • Brosens I.
        History of adenomyosis.
        Best Pract Res Clin Obstet Gynaecol. 2006; 20: 449-463
        • Yovich J.L.
        • Rowlands P.K.
        • Lingham S.
        • Sillender M.
        • Srinivasan S.
        Pathogenesis of endometriosis: look no further than John Sampson.
        Reprod Biomed Online. 2020; 40: 7-11
        • EMGE L.A.
        Problems in the diagnosis of adenomyosis uteri; with special reference to dysfunctional bleeding.
        West J Surg Obstet Gynecol. 1956; 64 (discussion, 304-305): 291-304
        • Koninckx P.R.
        • Oosterlynck D.
        • D’Hooghe T.
        • Meuleman C.
        Deeply infiltrating endometriosis is a disease whereas mild endometriosis could be considered a non-disease.
        Ann N Y Acad Sci. 1994; 734: 333-341
        • Bonatti M.
        • Vezzali N.
        • Lombardo F.
        • Ferro F.
        • Zamboni G.
        • Tauber M.
        • et al.
        Gallbladder adenomyomatosis: imaging findings, tricks and pitfalls.
        Insights Imaging. 2017; 8: 243-253
        • Meguid M.M.
        • Aun F.
        • Bradford M.L.
        Adenomyomatosis of the gallbladder.
        Am J Surg. 1984; 147: 260-262
        • Golse N.
        • Lewin M.
        • Rode A.
        • Sebagh M.
        • Mabrut J.Y.
        Gallbladder adenomyomatosis: diagnosis and management.
        J Visc Surg. 2017; 154: 345-353
        • Kim J.H.
        • Jeong I.H.
        • Han J.H.
        • Kim J.H.
        • Hwang J.C.
        • Yoo B.M.
        • et al.
        Clinical/pathological analysis of gallbladder adenomyomatosis; type and pathogenesis.
        Hepatogastroenterol. 2010; 57: 420-425
        • Audebert A.
        • Lecointre L.
        • Afors K.
        • Koch A.
        • Wattiez A.
        • Akladios C.
        Adolescent endometriosis: report of a series of 55 cases with a focus on clinical presentation and long-term issues.
        J Minim Invasive Gynecol. 2015; 22: 834-840
        • Kobayashi H.
        • Matsubara S.
        A classification proposal for adenomyosis based on magnetic resonance imaging.
        Gynecol Obstet Invest. 2020; 85: 118-126
        • Sampson J.A.
        Perforating hemorrhagic (chocolate) cysts of the ovary. Their importance and especially their relation to pelvic adenomas of endometrial type. Adenomyoma of the uterus, rectovaginal septum, sigmoid, etc.
        Arch Surg. 1921; 3: 245-323
        • Khan K.N.
        • Fujishita A.
        • Koshiba A.
        • Kuroboshi H.
        • Mori T.
        • Ogi H.
        • et al.
        Biological differences between intrinsic and extrinsic adenomyosis with coexisting deep infiltrating endometriosis.
        Reprod Biomed Online. 2019; 39: 343-353
        • Leyendecker G.
        • Bilgicyildirim A.
        • Inacker M.
        • Stalf T.
        • Huppert P.
        • Mall G.
        • et al.
        Adenomyosis and endometriosis. Re-visiting their association and further insights into the mechanisms of auto-traumatisation. An MRI study.
        Arch Gynecol Obstet. 2015; 291: 917-932
        • Leyendecker G.
        • Wildt L.
        • Mall G.
        The pathophysiology of endometriosis and adenomyosis: tissue injury and repair.
        Arch Gynecol Obstet. 2009; 280: 529-538
        • Qi Zhang
        • Duan J.
        • Olson M.
        • Fazleabas A.
        • Guo S.W.
        Cellular changes consistent with epithelial-mesenchymal transition and fibroblast-to-myofibroblast transdifferentiation in the progression of experimental endometriosis in baboons.
        Reprod Sci. 2016; 23: 1409-1421
        • Zhu B.
        • Chen Y.
        • Shen X.
        • Liu X.
        • Guo S.W.
        Anti-platelet therapy holds promises in treating adenomyosis: experimental evidence.
        Reprod Biol Endocrinol. 2016; 14: 66
        • Leyendecker G.
        • Wildt L.
        A new concept of endometriosis and adenomyosis: tissue injury and repair (TIAR).
        Horm Mol Biol Clin Investig. 2011; 5: 125-142
        • Uduwela A.S.
        • Perera M.A.
        • Aiqing L.
        • Fraser I.S.
        Endometrial-myometrial interface: relationship to adenomyosis and changes in pregnancy.
        Obstet Gynecol Surv. 2000; 55: 390-400
        • Ibrahim M.G.
        • Chiantera V.
        • Frangini S.
        • Younes S.
        • Köhler C.
        • Taube E.T.
        • et al.
        Ultramicro-trauma in the endometrial-myometrial junctional zone and pale cell migration in adenomyosis.
        Fertil Steril. 2015; 104 (e1-3): 1475-1483
        • Yang Y.M.
        • Yang W.X.
        Epithelial-to-mesenchymal transition in the development of endometriosis.
        Oncotarget. 2017; 8: 41679-41689
        • Liu X.
        • Shen M.
        • Qi Q.
        • Zhang H.
        • Guo S.W.
        Corroborating evidence for platelet-induced epithelial-mesenchymal transition and fibroblast-to-myofibroblast transdifferentiation in the development of adenomyosis.
        Hum Reprod. 2016; 31: 734-749
        • Kunz G.
        • Beil D.
        • Huppert P.
        • Leyendecker G.
        Structural abnormalities of the uterine wall in women with endometriosis and infertility visualized by vaginal sonography and magnetic resonance imaging.
        Hum Reprod. 2000; 15: 76-82
        • Brosens I.
        • Pijnenborg R.
        • Benagiano G.
        Defective myometrial spiral artery remodelling as a cause of major obstetrical syndromes in endometriosis and adenomyosis.
        Placenta. 2013; 34: 100-105
        • Exacoustos C.
        • Luciano D.
        • Corbett B.
        • De Felice G.
        • Di Feliciantonio M.
        • Luciano A.
        • et al.
        The uterine junctional zone: a 3-dimensional ultrasound study of patients with endometriosis.
        Am J Obstet Gynecol. 2013; 209 (e1-7): 248
        • Leyendecker G.
        • Kunz G.
        • Herbertz M.
        • Beil D.
        • Huppert P.
        • Mall G.
        • et al.
        Uterine peristaltic activity and the development of endometriosis.
        Ann N Y Acad Sci. 2004; 1034: 338-355
        • Kobayashi H.
        • Kishi Y.
        • Matsubara S.
        Mechanisms underlying adenomyosis-related fibrogenesis.
        Gynecol Obstet Invest. 2020; 85: 1-12
        • Shen M.
        • Liu X.
        • Zhang H.
        • Guo S.W.
        Transforming growth factor β1 signaling coincides with epithelial-mesenchymal transition and fibroblast-to-myofibroblast transdifferentiation in the development of adenomyosis in mice.
        Hum Reprod. 2016; 31: 355-369
        • Mosher A.A.
        • Rainey K.J.
        • Bolstad S.S.
        • Lye S.J.
        • Mitchell B.F.
        • Olson D.M.
        • et al.
        Development and validation of primary human myometrial cell culture models to study pregnancy and labour.
        BMC Pregnancy Childbirth. 2013; 13 (Suppl 1): S7
        • Vaes R.D.W.
        • van den Berk L.
        • Boonen B.
        • van Dijk D.P.J.
        • Olde Damink S.W.M.
        • Rensen S.S.
        A novel human cell culture model to study visceral smooth muscle phenotypic modulation in health and disease.
        Am J Physiol Cell Physiol. 2018; 315: C598-C607
        • Leoni P.
        • Carli F.
        • Halliday D.
        Intermediate filaments in smooth muscle from pregnant and non-pregnant human uterus.
        Biochem J. 1990; 269: 31-34
        • van Eys G.J.
        • Völler M.C.
        • Timmer E.D.
        • Wehrens X.H.
        • Small J.V.
        • Schalken J.A.
        • et al.
        Smoothelin expression characteristics: development of a smooth muscle cell in vitro system and identification of a vascular variant.
        Cell Struct Funct. 1997; 22: 65-72
        • Elia L.
        • Kunderfranco P.
        • Carullo P.
        • Vacchiano M.
        • Farina F.M.
        • Hall I.F.
        • et al.
        UHRF1 epigenetically orchestrates smooth muscle cell plasticity in arterial disease.
        J Clin Invest. 2018; 128: 2473-2486
        • Bond J.E.
        • Ho T.Q.
        • Selim M.A.
        • Hunter C.L.
        • Bowers E.V.
        • Levinson H.
        Temporal spatial expression and function of non-muscle myosin II isoforms IIA and IIB in scar remodeling.
        Lab Invest. 2011; 91: 499-508https://doi.org/10.1038/labinvest.2010.181
        • Anaf V.
        • Simon P.
        • Fayt I.
        • Noel J.
        Smooth muscles are frequent components of endometriotic lesions.
        Hum Reprod. 2000; 15: 767-771
        • Barcena de Arellano M.L.
        • Gericke J.
        • Reichelt U.
        • Okuducu A.F.
        • Ebert A.D.
        • Chiantera V.
        • et al.
        Immunohistochemical characterization of endometriosis-associated smooth muscle cells in human peritoneal endometriotic lesions.
        Hum Reprod. 2011; 26: 2721-2730
        • van Kaam K.J.
        • Schouten J.P.
        • Nap A.W.
        • Dunselman G.A.
        • Groothuis P.G.
        Fibromuscular differentiation in deeply infiltrating endometriosis is a reaction of resident fibroblasts to the presence of ectopic endometrium.
        Hum Reprod. 2008; 23: 2692-2700
        • Young V.J.
        • Ahmad S.F.
        • Duncan W.C.
        • Horne A.W.
        The role of TGF-β in the pathophysiology of peritoneal endometriosis.
        Hum Reprod Update. 2017; 23: 548-559
        • Matsuzaki S.
        • Darcha C.
        • Pouly J.L.
        • Canis M.
        Effects of matrix stiffness on epithelial to mesenchymal transition-like processes of endometrial epithelial cells: implications for the pathogenesis of endometriosis.
        Sci Rep. 2017; 7: 44616
        • Matsuzaki S.
        • Canis M.
        • Pouly J.L.
        • Darcha C.
        Soft matrices inhibit cell proliferation and inactivate the fibrotic phenotype of deep endometriotic stromal cells in vitro.
        Hum Reprod. 2016; 31: 541-553