Advertisement

Association of fetal heart rate short term variability pattern during term labor with neonatal morbidity and small for gestational age status

Published:September 03, 2022DOI:https://doi.org/10.1016/j.ejogrb.2022.08.026

      Abstract

      Objective

      To assess the association of fetal heart rate short-term variability (STV) pattern during term labor with both neonatal composite morbidity (cord blood pH ≤ 7.10 and/or neonatal intensive care unit admission and/or Apgar score at 5 min <7) and small for gestational age (SGA) status.

      Study design

      Retrospective cohort in a single academic institution between January 2016 and December 2018. A total of 1896 women that delivered a singleton during labor in cephalic presentation after 37 weeks of gestation were included (948 women with SGA neonates and 948 women with appropriate weight for gestational age (AGA) neonates that were matched to women with SGA neonates based on maternal age, parity, induction of labor, gestational diabetes, gestational age at delivery and a history of one cesarean section using propensity score matching). STV was compared at labor onset (cervical dilation ≤ 4 cm), in the first stage of labor (cervical dilation = 6 cm) and in the second stage of labor (cervical dilation = 10 cm). A generalized linear mixed model was used to assess the association between SGA status, neonatal composite morbidity and STV.

      Results

      After adjustment for maternal origin, term, gestational diabetes, labor length, SGA status was not associated with any change in STV during labor (mean adjusted STV: −0.20 ms, 95 %CI[-0.58–0.17], p = 0.284 at labor onset, 0.29 ms, 95 %CI[-0.1– 0.68], p = 0.155, in the first stage of labor and 0.36 ms, 95 %CI[-0.02–0.74], p = 0.065 in the second stage of labor). In case of neonatal composite morbidity mean adjusted STV was lower in the first stage of labor (mean adjusted STV: −1.29 ms, 95 %CI[-2.1 – −0.43], p = 0.003) and in the second stage of labor (mean adjusted STV: −1.15 ms, 95 %CI[-1.96 – −0.34], p = 0.005). The results were similar with the addition of delivery mode and meconium-stained amniotic fluid in the model or non-reassuring fetal heart rate and meconium-stained amniotic fluid.

      Conclusions

      This work suggests that STV decrease during term labor is associated with fetal well-being, independently of fetal weight. This suggests that further prospective studies should consider the evaluation of this parameter in the prediction of neonatal compromise.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      References

        • Modanlou H.D.
        • Freeman R.K.
        • Braly P.
        A simple method of fetal and neonatal heart rate beat-to-beat variability quantitation: Preliminary report.
        Am J Obstet Gynecol. 1977; 127: 861-868https://doi.org/10.1016/0002-9378(77)90119-3
        • Street P.
        • Dawes G.S.
        • Moulden M.
        • Redman C.W.G.
        Short-term variation In abnormal antenatal fetal heart rate records.
        Am J Obstet Gynecol. 1991; 165: 515-523https://doi.org/10.1016/0002-9378(91)90277-X
        • Dawes G.S.
        • Moulden M.
        • Redman C.W.
        Short-term fetal heart rate variation, decelerations, and umbilical flow velocity waveforms before labor.
        Obstet Gynecol. 1992; 80: 673-678
        • Dawes G.S.
        • Moulden M.
        • Redman C.W.G.
        System 8000: Computerized antenatal FHR analysis.
        J Perinat Med. 1991; 19: 47-51https://doi.org/10.1515/jpme.1991.19.1-2.47
        • Serra V.
        • Moulden M.
        • Bellver J.
        • Redman C.
        The value of the short-term fetal heart rate variation for timing the delivery of growth-retarded fetuses.
        BJOG: An International Journal of Obstetrics & Gynaecology. 2008; 115: 1101-1107https://doi.org/10.1111/j.1471-0528.2008.01774.x
        • Ganzevoort W.
        • Mensing Van Charante N.
        • Thilaganathan B.
        • et al.
        How to monitor pregnancies complicated by fetal growth restriction and delivery before 32 weeks: post-hoc analysis of TRUFFLE study: Monitoring FGR pregnancies delivering before 32 weeks.
        Ultrasound Obstet Gynecol. 2017; 49: 769-777https://doi.org/10.1002/uog.17433
      1. Lam MSN, Chaemsaithong P, Kwan AHW, et al. Prelabor short-term variability in fetal heart rate by computerized cardiotocogram and maternal fetal doppler indices for the prediction of labor outcomes. The Journal of Maternal-Fetal & Neonatal Medicine. Published online April 14, 2020:1-10. doi:10.1080/14767058.2020.1752657.

        • Galazios G.
        • Tripsianis G.
        • Tsikouras P.
        • Koutlaki N.
        • Liberis V.
        Fetal distress evaluation using and analyzing the variables of antepartum computerized cardiotocography.
        Arch Gynecol Obstet. 2010; 281: 229-233https://doi.org/10.1007/s00404-009-1119-8
        • Stumpfe F.M.
        • Kehl S.
        • Pretscher J.
        • et al.
        Correlation of short-term variation and Doppler parameters with adverse perinatal outcome in low-risk fetuses at term.
        Arch Gynecol Obstet. 2019; 299: 411-420https://doi.org/10.1007/s00404-018-4978-z
        • Aernout E.M.
        • Devos P.
        • Deruelle P.
        • Houfflin-Debarge V.
        • Subtil D.
        Short-Term Variation of the Fetal Heart Rate for Predicting Neonatal Acidosis in Preeclampsia.
        Fetal Diagn Ther. 2015; 38: 179-185https://doi.org/10.1159/000380820
        • Stumpfe F.M.
        • Faschingbauer F.
        • Kehl S.
        • et al.
        Correlation of short-term variation and Doppler parameters with adverse perinatal outcome in small-for-gestational age fetuses at term.
        Arch Gynecol Obstet. 2019; 300: 575-581https://doi.org/10.1007/s00404-019-05216-7
        • Gatellier M.A.
        • De Jonckheere J.
        • Storme L.
        • Houfflin-Debarge V.
        • Ghesquiere L.
        • Garabedian C.
        Fetal heart rate variability analysis for neonatal acidosis prediction.
        J Clin Monit Comput. 2021; 35: 771-777https://doi.org/10.1007/s10877-020-00535-6
        • Mamelle N.
        • Munoz F.
        • Grandjean H.
        Fetal growth from the AUDIPOG study. I. Establishment of reference curves.
        J Gynecol Obstet Biol Reprod (Paris). 1996; 25: 61-70
        • Agrawal S.
        Intrapartum computerized fetal heart rate parameters and metabolic acidosis at birth.
        Obstet Gynecol. 2003; 102: 731-738https://doi.org/10.1016/S0029-7844(03)00806-8
        • Yeh P.
        • Emary K.
        • Impey L.
        The relationship between umbilical cord arterial pH and serious adverse neonatal outcome: analysis of 51 519 consecutive validated samples: Umbilical cord arterial pH and serious neonatal outcome.
        BJOG: An International Journal of Obstetrics & Gynaecology. 2012; 119: 824-831https://doi.org/10.1111/j.1471-0528.2012.03335.x
        • Annunziata M.L.
        • Tagliaferri S.
        • Esposito F.G.
        • et al.
        Computerized analysis of fetal heart rate variability signal during the stages of labor: cCTG analysis during labor.
        J Obstet Gynaecol Res. 2016; 42: 258-265https://doi.org/10.1111/jog.12908
        • Sabol B.A.
        • Caughey A.B.
        Acidemia in neonates with a 5-minute Apgar score of 7 or greater – What are the outcomes?.
        Am J Obstet Gynecol. 2016; 215: 486.e1-486.e6https://doi.org/10.1016/j.ajog.2016.05.035
        • Victory R.
        • Penava D.
        • da Silva O.
        • Natale R.
        • Richardson B.
        Umbilical cord pH and base excess values in relation to adverse outcome events for infants delivering at term.
        Am J Obstet Gynecol. 2004; 191: 2021-2028https://doi.org/10.1016/j.ajog.2004.04.026
        • Bligh L.N.
        • Alsolai A.
        • Greer R.M.
        • Kumar S.
        Screening for adverse perinatal outcomes: uterine artery Doppler, cerebroplacental ratio and estimated fetal weight in low-risk women at term.
        The Journal of Maternal-Fetal & Neonatal Medicine. 2018; 31: 3301-3307https://doi.org/10.1080/14767058.2017.1369518
      2. ACOG Practice Bulletin #70: Intrapartum Fetal Heart Rate Monitoring. Obstetrics & Gynecology. 2005;106(6):1453-1460. doi:10.1097/00006250-200512000-00053.

      3. Nelder. McCullagh, P. and Nelder, J.A. (1989) Generalized Linear Models. 2nd Edition, Chapman and Hall, London. Http://Dx.Doi.Org/10.1007/978-1-4899-3242-6.

        • Marie C.
        • Sinoquet C.
        • Barasinski C.
        • Lémery D.
        • Vendittelli F.
        Does maternal race influence the short-term variation of the fetal heart rate? An historical cohort study.
        European Journal of Obstetrics & Gynecology and Reproductive Biology. 2015; 193: 102-107https://doi.org/10.1016/j.ejogrb.2015.07.007
        • Serra V.
        • Bellver J.
        • Moulden M.
        • Redman C.W.G.
        Computerized analysis of normal fetal heart rate pattern throughout gestation.
        Ultrasound Obstet Gynecol. 2009; 34: 74-79https://doi.org/10.1002/uog.6365
        • Costa V.N.
        • Nomura R.M.Y.
        • Reynolds K.S.
        • Miyadahira S.
        • Zugaib M.
        Effects of maternal glycemia on fetal heart rate in pregnancies complicated by pregestational diabetes mellitus.
        European Journal of Obstetrics & Gynecology and Reproductive Biology. 2009; 143: 14-17https://doi.org/10.1016/j.ejogrb.2008.10.019
        • Tincello D.
        • White S.
        • Walkinshaw S.
        Computerised analysis of fetal heart rate recordings in maternal type I diabetes mellitus.
        BJOG: An Internal Journal of Obs Gyn. 2001; 108: 853-857https://doi.org/10.1111/j.1471-0528.2001.00208.x
      4. Green P, MacLeod CJ. SIMR : an R package for power analysis of generalized linear mixed models by simulation. Nakagawa S, ed. Methods Ecol Evol. 2016;7(4):493-498. doi:10.1111/2041-210X.12504.

      5. Nakagawa S, Johnson PCD, Schielzeth H. The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. :11.

      6. Kiserud T, Piaggio G, Carroli G, et al. The World Health Organization Fetal Growth Charts: A Multinational Longitudinal Study of Ultrasound Biometric Measurements and Estimated Fetal Weight. Myers JE, ed. PLoS Med. 2017;14(1):e1002220. doi:10.1371/journal.pmed.1002220.

      7. Bates. Bates, D., Maechler, M. & Bolker, B. (2011) lme4: linear mixed-effects models. R package, version 0.999375-42. http://CRAN.R-project.org/package=lme4.

        • Esposito F.G.
        • Tagliaferri S.
        • Giudicepietro A.
        • et al.
        Fetal heart rate monitoring and neonatal outcome in a population of early- and late-onset intrauterine growth restriction.
        J Obstet Gynaecol Res. 2019; 45: 1343-1351https://doi.org/10.1111/jog.13981