Advertisement

Novel mutations in TUBB8 and ZP3 cause human oocyte maturation arrest and female infertility

Published:October 28, 2022DOI:https://doi.org/10.1016/j.ejogrb.2022.10.017

      Abstract

      Purpose

      Variations in many genes may lead to the occurrence of oocyte maturation defects and female infertility. The objective was to describe newly discovered mutations in TUBB8 and ZP3, and to characterise the accompanying spectrum of phenotypes and modes of inheritance.

      Methods

      TUBB8 and ZP3 were sequenced from genomic DNA samples extracted from peripheral blood of patients and their family members by the whole-exome sequencing. The TUBB8 and ZP3 sequences are then aligned with cryptographic software to identify rare variations. Sanger sequencing and mass spectrometry were used to validate mutations. ExAC database was used to retrieve the frequency of corresponding mutations. PolyPhen-2 and PROVEAN were analyzed for mutations using silicon.

      Results

      We identified Three novel mutations and two known variant in TUBB8 and ZP3 associated with maturation in five families, and fertilization and developmental arrest are in these patients. These mutations include four heterozygous mutations in TUBB8 (c.730G > A, p.Gly244Ser, c.124C > G, p.Leu42Val, c.1172G > T, p.Arg391Leu and c.178G > A, p.Val60Met), and a heterozygous mutation in ZP3 (c.400G > A, p.Ala134Thr). Among them, these variants of TUBB8 were highly conserved among primates.

      Conclusion

      As far as we know, the TUBB8 mutations detected in our study at four sites have not been reported before, and the variant of ZP3 has been published as pathogenic. Our findings extend the known mutant spectrum of TUBB8 and ZP3, and provide insights into the etiology of infertility in human women. The exact molecular mechanism has not been analyzed and should be further investigated in the future.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      References

        • Li R.
        • Albertini D.F.
        The road to maturation: somatic cell interaction and self-organization of the mammalian oocyte.
        Nat Rev Mol Cell Biol. 2013; 14 (Epub 2013/02/23 PubMed PMID: 23429793): 141-152https://doi.org/10.1038/nrm3531
        • Edwards R.G.
        • Bavister B.D.
        • Steptoe P.C.
        Early stages of fertilization in vitro of human oocytes matured in vitro.
        Nature. 1969; 221 (Epub 1969/02/15 PubMed PMID: 4886881): 632-635https://doi.org/10.1038/221632a0
        • Coticchio G.
        • Dal Canto M.
        • Mignini Renzini M.
        • Guglielmo M.C.
        • Brambillasca F.
        • Turchi D.
        • et al.
        Oocyte maturation: gamete-somatic cells interactions, meiotic resumption, cytoskeletal dynamics and cytoplasmic reorganization.
        Hum Reprod Update. 2015; 21 (Epub 2015/03/07 PubMed PMID: 25744083): 427-454https://doi.org/10.1093/humupd/dmv011
        • Vogt E.
        • Kirsch-Volders M.
        • Parry J.
        • Eichenlaub-Ritter U.
        Spindle formation, chromosome segregation and the spindle checkpoint in mammalian oocytes and susceptibility to meiotic error.
        Mutat Res. 2008; 651 (Epub 2007/12/22 PubMed PMID: 18096427): 14-29https://doi.org/10.1016/j.mrgentox.2007.10.015
        • Park J.
        • Su Y.
        • Ariga M.
        • Law E.
        • Jin S.
        • Conti M.
        EGF-like growth factors as mediators of LH action in the ovulatory follicle.
        Science (New York, NY). 2004; 303 (PubMed PMID: 14726596): 682-684https://doi.org/10.1126/science.1092463
        • Mehlmann L.M.
        Stops and starts in mammalian oocytes: recent advances in understanding the regulation of meiotic arrest and oocyte maturation.
        Reproduction. 2005; 130 (Epub 2005/12/03 PubMed PMID: 16322539): 791-799https://doi.org/10.1530/rep.1.00793
        • Dean J.
        Exacting requirements for development of the egg.
        N Engl J Med. 2016; 374 (Epub 2016/01/21 PubMed PMID: 26789878): 279-280https://doi.org/10.1056/NEJMe1515512
        • Swain J.E.
        • Pool T.B.
        ART failure: oocyte contributions to unsuccessful fertilization.
        Hum Reprod Update. 2008; 14 (Epub 2008/07/08 PubMed PMID: 18603645): 431-446https://doi.org/10.1093/humupd/dmn025
        • Feng R.
        • Sang Q.
        • Kuang Y.
        • Sun X.
        • Yan Z.
        • Zhang S.
        • et al.
        Mutations in TUBB8 and human oocyte meiotic arrest.
        N Engl J Med. 2016; 374 (Epub 2016/01/21 PubMed PMID: 26789871; PubMed Central PMCID: PMCPMC4767273): 223-232https://doi.org/10.1056/NEJMoa1510791
        • Huang L.
        • Tong X.
        • Luo L.
        • Zheng S.
        • Jin R.
        • Fu Y.
        • et al.
        Mutation analysis of the TUBB8 gene in nine infertile women with oocyte maturation arrest.
        Reprod Biomed Online. 2017; 35 (Epub 2017/06/28 PubMed PMID: 28652098): 305https://doi.org/10.1016/j.rbmo.2017.05.017
        • Feng R.
        • Yan Z.
        • Li B.
        • Yu M.
        • Sang Q.
        • Tian G.
        • et al.
        Mutations in TUBB8 cause a multiplicity of phenotypes in human oocytes and early embryos.
        J Med Genet. 2016; 53 (Epub 2016/06/09 PubMed PMID: 27273344; PubMed Central PMCID: PMCPMC5035199): 662-671https://doi.org/10.1136/jmedgenet-2016-103891
        • Xing Q.
        • Wang R.
        • Chen B.
        • Li L.
        • Pan H.
        • Li T.
        • et al.
        Rare homozygous mutation in TUBB8 associated with oocyte maturation defect-2 in a consanguineous mating family.
        J Ovarian Res. 2020; 13 (Epub 2020/04/23 PubMed PMID: 32316999; PubMed Central PMCID: PMCPMC7175565): 42https://doi.org/10.1186/s13048-020-00637-4
        • Zhou Z.
        • Ni C.
        • Wu L.
        • Chen B.
        • Xu Y.
        • Zhang Z.
        • et al.
        Novel mutations in ZP1, ZP2, and ZP3 cause female infertility due to abnormal zona pellucida formation.
        Hum Genet. 2019; 138 (PubMed PMID: 30810869): 327-337https://doi.org/10.1007/s00439-019-01990-1
        • Luo G.
        • Zhu L.
        • Liu Z.
        • Yang X.
        • Xi Q.
        • Li Z.
        • et al.
        Novel mutations in ZP1 and ZP2 cause primary infertility due to empty follicle syndrome and abnormal zona pellucida.
        J Assist Reprod Genet. 2020; 37 (PubMed PMID: 32829425): 2853-2860https://doi.org/10.1007/s10815-020-01926-z
        • Huang H.L.
        • Lv C.
        • Zhao Y.C.
        • Li W.
        • He X.M.
        • Li P.
        • et al.
        Mutant ZP1 in familial infertility.
        N Engl J Med. 2014; 370 (Epub 2014/03/29 PubMed PMID: 24670168; PubMed Central PMCID: PMCPMC4076492): 1220-1226https://doi.org/10.1056/NEJMoa1308851
        • Xu Q.
        • Zhu X.
        • Maqsood M.
        • Li W.
        • Tong X.
        • Kong S.
        • et al.
        A novel homozygous nonsense ZP1 variant causes human female infertility associated with empty follicle syndrome (EFS).
        Mol Genet Genomic Med. 2020; 8 (Epub 2020/04/25 PubMed PMID: 32329253; PubMed Central PMCID: PMCPMC7336750): e1269https://doi.org/10.1002/mgg3.1269
        • Yuan P.
        • Li R.
        • Li D.
        • Zheng L.
        • Ou S.
        • Zhao H.
        • et al.
        Novel mutation in the ZP1 gene and clinical implications.
        J Assist Reprod Genet. 2019; 36 (Epub 2019/02/20 PubMed PMID: 30778819; PubMed Central PMCID: PMCPMC6505010): 741-747https://doi.org/10.1007/s10815-019-01404-1
        • Yang P.
        • Luan X.
        • Peng Y.
        • Chen T.
        • Su S.
        • Zhang C.
        • et al.
        Novel zona pellucida gene variants identified in patients with oocyte anomalies.
        Fertil Steril. 2017; 107 (Epub 2017/06/05 PubMed PMID: 28577617): 1364-1369https://doi.org/10.1016/j.fertnstert.2017.03.029
        • Dai C.
        • Chen Y.
        • Hu L.
        • Du J.
        • Gong F.
        • Dai J.
        • et al.
        ZP1 mutations are associated with empty follicle syndrome: evidence for the existence of an intact oocyte and a zona pellucida in follicles up to the early antral stage. a case report.
        Hum Reprod. 2019; 34 (Epub 2019/11/18 PubMed PMID: 31734689): 2201-2207https://doi.org/10.1093/humrep/dez174
        • Sun L.
        • Fang X.
        • Chen Z.
        • Zhang H.
        • Zhang Z.
        • Zhou P.
        Compound heterozygous ZP1 mutations cause empty follicle syndrome in infertile sisters.
        Hum Mutat. 2019; 40 (Epub 2019/07/12 PubMed PMID: 31292994): 2001-2006https://doi.org/10.1002/humu.23864
        • Li H.
        • Durbin R.
        Fast and accurate short read alignment with Burrows-Wheeler transform.
        Bioinformatics. 2009; 25 (Epub 2009/05/20 PubMed PMID: 19451168; PubMed Central PMCID: PMCPMC2705234): 1754-1760https://doi.org/10.1093/bioinformatics/btp324
        • Li H.
        • Durbin R.
        Fast and accurate long-read alignment with Burrows-Wheeler transform.
        Bioinformatics. 2010; 26 (Epub 2010/01/19 PubMed PMID: 20080505; PubMed Central PMCID: PMCPMC2828108): 589-595https://doi.org/10.1093/bioinformatics/btp698
        • Richards S.
        • Aziz N.
        • Bale S.
        • Bick D.
        • Das S.
        • Gastier-Foster J.
        • et al.
        Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American college of medical genetics and genomics and the association for molecular pathology.
        Genet Med. 2015; 17 (Epub 2015/03/06 PubMed PMID: 25741868; PubMed Central PMCID: PMCPMC4544753): 405-424https://doi.org/10.1038/gim.2015.30
      1. 24. den Dunnen JT. Sequence Variant Descriptions: HGVS Nomenclature and Mutalyzer. Curr Protoc Hum Genet. 2016;90:7 13 1-7 9. Epub 2016/07/02. doi: 10.1002/cphg.2. PubMed PMID: 27367167.

        • Adzhubei I.A.
        • Schmidt S.
        • Peshkin L.
        • Ramensky V.E.
        • Gerasimova A.
        • Bork P.
        • et al.
        A method and server for predicting damaging missense mutations.
        Nat Methods. 2010; 7 (Epub 2010/04/01 PubMed PMID: 20354512; PubMed Central PMCID: PMCPMC2855889): 248-249https://doi.org/10.1038/nmeth0410-248
        • Sousa M.
        • Teixeira da Silva J.
        • Silva J.
        • Cunha M.
        • Viana P.
        • Oliveira E.
        • et al.
        Embryological, clinical and ultrastructural study of human oocytes presenting indented zona pellucida.
        Zygote. 2015; 23 (Epub 2013/09/03 PubMed PMID: 23992046): 145-157https://doi.org/10.1017/S0967199413000403
        • Chen B.
        • Zhang Z.
        • Sun X.
        • Kuang Y.
        • Mao X.
        • Wang X.
        • et al.
        Biallelic mutations in PATL2 cause female infertility characterized by oocyte maturation arrest.
        Am J Hum Genet. 2017; 101 (Epub 2017/10/03 PubMed PMID: 28965849; PubMed Central PMCID: PMCPMC5630194): 609-615https://doi.org/10.1016/j.ajhg.2017.08.018
        • Maddirevula S.
        • Coskun S.
        • Alhassan S.
        • Elnour A.
        • Alsaif H.S.
        • Ibrahim N.
        • et al.
        Female infertility caused by mutations in the oocyte-specific translational repressor PATL2.
        Am J Hum Genet. 2017; 101 (Epub 2017/10/03 PubMed PMID: 28965844; PubMed Central PMCID: PMCPMC5630161): 603-608https://doi.org/10.1016/j.ajhg.2017.08.009
        • Sang Q.
        • Li B.
        • Kuang Y.
        • Wang X.
        • Zhang Z.
        • Chen B.
        • et al.
        Homozygous mutations in WEE2 cause fertilization failure and female infertility.
        Am J Hum Genet. 2018; 102 (Epub 2018/04/03 PubMed PMID: 29606300; PubMed Central PMCID: PMCPMC5985286): 649-657https://doi.org/10.1016/j.ajhg.2018.02.015
        • Sang Q.
        • Zhang Z.
        • Shi J.
        • Sun X.
        • Li B.
        • Yan Z.
        • et al.
        A pannexin 1 channelopathy causes human oocyte death.
        Sci Transl Med. 2019; 11 (Epub 2019/03/29 PubMed PMID: 30918116)https://doi.org/10.1126/scitranslmed.aav8731
        • Zheng W.
        • Zhou Z.
        • Sha Q.
        • Niu X.
        • Sun X.
        • Shi J.
        • et al.
        Homozygous mutations in BTG4 cause zygotic cleavage failure and female infertility.
        Am J Hum Genet. 2020; 107 (Epub 2020/06/06 PubMed PMID: 32502391; PubMed Central PMCID: PMCPMC7332666): 24-33https://doi.org/10.1016/j.ajhg.2020.05.010
        • Zhang Z.
        • Li B.
        • Fu J.
        • Li R.
        • Diao F.
        • Li C.
        • et al.
        Bi-allelic missense pathogenic variants in TRIP13 cause female infertility characterized by oocyte maturation arrest.
        Am J Hum Genet. 2020; 107 (Epub 2020/05/31 PubMed PMID: 32473092; PubMed Central PMCID: PMCPMC7332649): 15-23https://doi.org/10.1016/j.ajhg.2020.05.001
        • Wang W.
        • Dong J.
        • Chen B.
        • Du J.
        • Kuang Y.
        • Sun X.
        • et al.
        Homozygous mutations in REC114 cause female infertility characterised by multiple pronuclei formation and early embryonic arrest.
        J Med Genet. 2020; 57 (Epub 2019/11/11 PubMed PMID: 31704776): 187-194https://doi.org/10.1136/jmedgenet-2019-106379
        • Zhao L.
        • Guan Y.
        • Meng Q.
        • Wang W.
        • Wu L.
        • Chen B.
        • et al.
        Identification of novel mutations in CDC20: expanding the mutational spectrum for female infertility.
        Front Cell Dev Biol. 2021; 9 (Epub 2021/04/27 PubMed PMID: 33898437; PubMed Central PMCID: PMCPMC8063106)647130https://doi.org/10.3389/fcell.2021.647130
        • Huang L.
        • Wang F.
        • Kong S.
        • Wang Y.
        • Song G.
        • Lu F.
        • et al.
        Novel mutations in CDC20 are associated with female infertility due to oocyte maturation abnormality and early embryonic arrest.
        Reprod Sci. 2021; (Epub 2021/03/09 PubMed PMID: 33683667)https://doi.org/10.1007/s43032-021-00524-3
        • Yang P.
        • Chen T.
        • Wu K.
        • Hou Z.
        • Zou Y.
        • Li M.
        • et al.
        A homozygous variant in TBPL2 was identified in women with oocyte maturation defects and infertility.
        Hum Reprod. 2021; (Epub 2021/04/25 PubMed PMID: 33893736)https://doi.org/10.1093/humrep/deab094
        • Chen Z.
        • Ming T.
        • Nielsen H.
        Maturation arrest of human oocytes at germinal vesicle stage.
        J Hum Reprod Sci. 2010; 3 (PubMed PMID: 21234179): 153-157https://doi.org/10.4103/0974-1208.74161
        • Xiang J.
        • Wang W.
        • Qian C.
        • Xue J.
        • Wang T.
        • Li H.
        • et al.
        Human oocyte maturation arrest caused by a novel missense mutation in TUBB8.
        J Int Med Res. 2018; 46 (Epub 2018/06/08 PubMed PMID: 29877102; PubMed Central PMCID: PMCPMC6135992): 3759-3764https://doi.org/10.1177/030006051877868
        • Chen B.
        • Wang W.
        • Peng X.
        • Jiang H.
        • Zhang S.
        • Li D.
        • et al.
        The comprehensive mutational and phenotypic spectrum of TUBB8 in female infertility.
        Eur J Hum Genet. 2019; 27 (Epub 2018/10/10 PubMed PMID: 30297906; PubMed Central PMCID: PMCPMC6336793): 300-307https://doi.org/10.1038/s41431-018-0283-3
        • Jia Y.
        • Li K.
        • Zheng C.
        • Tang Y.
        • Bai D.
        • Yin J.
        • et al.
        Identification and rescue of a novel TUBB8 mutation that causes the first mitotic division defects and infertility.
        J Assist Reprod Genet. 2020; 37 (PubMed PMID: 32949002): 2713-2722https://doi.org/10.1007/s10815-020-01945-w
        • Zhao L.
        • Guan Y.
        • Wang W.
        • Chen B.
        • Xu S.
        • Wu L.
        • et al.
        Identification novel mutations in TUBB8 in female infertility and a novel phenotype of large polar body in oocytes with TUBB8 mutations.
        J Assist Reprod Genet. 2020; 37 (Epub 2020/06/12 PubMed PMID: 32524331; PubMed Central PMCID: PMCPMC7468027): 1837-1847https://doi.org/10.1007/s10815-020-01830-6
        • Chen B.
        • Li B.
        • Li D.
        • Yan Z.
        • Mao X.
        • Xu Y.
        • et al.
        Novel mutations and structural deletions in TUBB8: expanding mutational and phenotypic spectrum of patients with arrest in oocyte maturation, fertilization or early embryonic development.
        Hum Reprod. 2017; 32 (Epub 2016/12/19 PubMed PMID: 27989988): 457-464https://doi.org/10.1093/humrep/dew322
        • Yuan P.
        • Zheng L.
        • Liang H.
        • Li Y.
        • Zhao H.
        • Li R.
        • et al.
        A novel mutation in the TUBB8 gene is associated with complete cleavage failure in fertilized eggs.
        J Assist Reprod Genet. 2018; 35 (PubMed PMID: 29704226): 1349-1356https://doi.org/10.1007/s10815-018-1188-3
        • Chakravarty S.
        • Kadunganattil S.
        • Bansal P.
        • Sharma R.K.
        • Gupta S.K.
        Relevance of glycosylation of human zona pellucida glycoproteins for their binding to capacitated human spermatozoa and subsequent induction of acrosomal exocytosis.
        Mol Reprod Dev. 2008; 75 (Epub 2007/05/09 PubMed PMID: 17486637): 75-88https://doi.org/10.1002/mrd.20726
        • Wei X.
        • Li Y.
        • Liu Q.
        • Liu W.
        • Yan X.
        • Zhu X.
        • et al.
        Mutations in ZP4 are associated with abnormal zona pellucida and female infertility.
        J Clin Pathol. 2021; (Epub 2021/01/20 PubMed PMID: 33461974)https://doi.org/10.1136/jclinpath-2020-207170