Advertisement
Research Article| Volume 282, P133-139, March 2023

Download started.

Ok

Gene polymorphisms within regions of complement component C1q in HIV associated preeclampsia

Published:January 25, 2023DOI:https://doi.org/10.1016/j.ejogrb.2023.01.029

      Abstract

      Objective

      This study investigates the association of C1q gene (rs292001 and rs294183) polymorphisms in HIV infected and uninfected preeclamptic women of African ancestry.

      Materials and methods

      The study population consisted of 325 pregnant women of African ancestry grouped into 145 normotensive pregnant women (72 HIV uninfected normotensive, 73 HIV infected normotensive) and 180 preeclamptic pregnant women (103 HIV uninfected preeclamptics, 77 HIV infected preeclamptics). Preeclamptic pregnant women were further sub-grouped into 79 early-onset preeclampsia (EOPE) (40 HIV uninfected EOPE, 39 HIV infected EOPE) and 101 late-onset preeclampsia (LOPE) (63 HIV uninfected LOPE, 38 HIV infected LOPE). Genotyping of complement C1q gene polymorphisms (rs292001 and rs294183) was detected using a TaqMan® SNP Genotyping assay from purified DNA.

      Results

      No significant differences in allelic and genotype frequencies of rs292001 and rs294183 between preeclamptic and normotensive women were observed. Likewise, there were no significant differences in allelic and genotype frequencies between HIV infected normotensive vs HIV infected preeclampsia and HIV uninfected normotensive vs HIV uninfected preeclampsia for both SNPs. However, the odds ratio of preeclamptic women having the GA genotype was 1:2.

      Conclusion

      We demonstrate that SNPs of the C1q gene (rs292001 and rs294183) are not associated with the pathogenesis of PE development in women of African ancestry. The role of C1q rs292001 heterozygous GA is highlighted (with and without HIV infection) may affect susceptibility to PE development. Notably, this dysregulation may affect C1q translation and protein output thus influencing the downstream role of the complement system and functional immunology in HIV infection comorbid with PE.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      References

        • Roberts J.M.
        • Redman C.W.
        Pre-eclampsia: more than pregnancy-induced hypertension.
        Lancet. 1993; 341: 1447-1451
        • Roberts J.
        • Cooper D.W.
        Pathogenesis and genetics of pre-eclampsia.
        Lancet. 2001; 357: 53-56
        • Zhong X.Y.
        • Holzgreve W.
        • Hahn S.
        The levels of circulatory fetal DNA in maternal plasma are elevated prior to the onset of preeclampsia.
        Hypertens Pregnancy. 2002; 21: 77-83
        • Serrano N.C.
        Immunology and genetic of preeclampsia.
        Clin Dev Immunol. 2006; 13: 197-201
        • Ilekis J.V.
        • Reddy U.M.
        • Roberts J.M.
        Preeclampsia—a pressing problem: an executive summary of a National Institute of Child Health and Human Development workshop.
        Reprod Sci. 2007; 14: 508-523
        • Salmon J.E.
        • Heuser C.
        • Triebwasser M.
        • Liszewski M.K.
        • Kavanagh D.
        • Roumenina L.
        • et al.
        Mutations in complement regulatory proteins predispose to preeclampsia: a genetic analysis of the PROMISSE cohort.
        PLoS Med. 2011; 8: e1001013
        • Johnson M.P.
        • Brennecke S.P.
        • East C.E.
        • Göring H.H.H.
        • Kent J.W.
        • Dyer T.D.
        • et al.
        Genome-wide association scan identifies a risk locus for preeclampsia on 2q14, near the inhibin, beta B gene.
        PLoS One. 2012; 7: e33666
      1. Practice ACoO. ACOG practice bulletin. Diagnosis and management of preeclampsia and eclampsia. Number 33, January 2002. American College of Obstetricians and Gynecologists. Int J Gynaecol Obstet. 2002;77(1):67-75.

        • Gaunt G.
        • Ramin K.
        Immunological tolerance of the human fetus.
        Am J Perinatol. 2001; 18: 299-312
        • Lin J.
        • August P.
        Genetic thrombophilias and preeclampsia: a meta-analysis.
        Obstet Gynecol. 2005; 105: 182-192
        • Khong T.
        • De Wolf F.
        • Robertson W.
        • Brosens I.
        Inadequate maternal vascular response to placentation in pregnancies complicated by pre-eclampsia and by small-for-gestational age infants.
        BJOG. 1986; 93: 1049-1059
        • Kupferminc M.
        • Fait G.
        • Many A.
        • Gordon D.
        • Eldor A.
        • Lessing J.
        Severe preeclampsia and high frequency of genetic thrombophilic mutations.
        Obstet Gynecol. 2000; 96: 45-49
        • Kang J.H.
        • Song H.
        • Yoon J.A.
        • Park D.Y.
        • Kim S.H.
        • Lee K.J.
        • et al.
        Preeclampsia leads to dysregulation of various signaling pathways in placenta.
        J Hypertens. 2011; 29: 928-936
        • Lokki A.I.
        • Kaartokallio T.
        • Holmberg V.
        • Onkamo P.
        • Koskinen L.L.E.
        • Saavalainen P.
        • et al.
        Analysis of complement C3 gene reveals susceptibility to severe preeclampsia.
        Front Immunol. 2017; 8
        • Lokki A.I.
        • Heikkinen-Eloranta J.
        • Jarva H.
        • Saisto T.
        • Lokki M.-L.
        • Laivuori H.
        • et al.
        Complement activation and regulation in preeclamptic placenta.
        Front Immunol. 2014; 5: 312
        • Tang M.X.
        • Zhang Y.H.
        • Hu L.
        • Kwak-Kim J.
        • Liao A.H.
        CD 14++ CD 16+ HLA-DR+ monocytes in peripheral blood are quantitatively correlated with the severity of pre-eclampsia.
        Am J Reprod Immunol. 2015; 74: 116-122
        • Pijnenborg R.
        • Vercruysse L.
        • Hanssens M.
        The uterine spiral arteries in human pregnancy: facts and controversies.
        Placenta. 2006; 27: 939-958
        • Hoffman M.C.
        • Rumer K.K.
        • Kramer A.
        • Lynch A.M.
        • Winn V.D.
        Maternal and fetal alternative complement pathway activation in early severe preeclampsia.
        Am J Reprod Immunol. 2014; 71: 55-60
        • Boij R.
        • Svensson J.
        • Nilsson-Ekdahl K.
        • Sandholm K.
        • Lindahl T.L.
        • Palonek E.
        • et al.
        Biomarkers of coagulation, inflammation, and angiogenesis are independently associated with preeclampsia.
        Am J Reprod Immunol. 2012; 68: 258-270
        • Nonaka M.
        • Kimura A.
        Genomic view of the evolution of the complement system.
        Immunogenetics. 2006; 58: 701-713
        • Reid K.B.
        • Porter R.R.
        The proteolytic activation systems of complement.
        Annu Rev Biochem. 1981; 50: 433-464
        • Harboe M.
        • Mollnes T.E.
        The alternative complement pathway revisited.
        J Cell Mol Med. 2008; 12: 1074-1084
      2. Fearon DT, Austen KF. Initiation of C3 cleavage in the alternative complement pathway. J Immunol. 1975;115(5):1357-61.

        • Singh J.
        • Ahmed A.
        • Girardi G.
        Role of complement component C1q in the onset of preeclampsia in mice.
        Hypertension. 2011; 58: 716-724
        • Kouser L.
        • Madhukaran S.P.
        • Shastri A.
        • Saraon A.
        • Ferluga J.
        • Al-Mozaini M.
        • et al.
        Emerging and novel functions of complement protein C1q.
        Front Immunol. 2015; 6: 317
      3. Agostinis C, Bulla R, Tripodo C, Gismondi A, Stabile H, Bossi F, et al. An alternative role of C1q in cell migration and tissue remodeling: contribution to trophoblast invasion and placental development. J Immunol. 2010;185(7):4420-9.

        • Mosaad Y.M.
        • Hammad A.
        • Fawzy Z.
        • El-Refaaey A.
        • Tawhid Z.
        • Hammad E.M.
        • et al.
        C1q rs292001 polymorphism and C1q antibodies in juvenile lupus and their relation to lupus nephritis.
        Clin Exp Immunol. 2015; 182: 23-34
        • Radanova M.
        • Vasilev V.
        • Dimitrov T.
        • Deliyska B.
        • Ikonomov V.
        • Ivanova D.
        Association of rs172378 C1q gene cluster polymorphism with lupus nephritis in Bulgarian patients.
        Lupus. 2015; 24: 280-289
        • Martens H.A.
        • Zuurman M.W.
        • de Lange A.H.M.
        • Nolte I.M.
        • van der Steege G.
        • Navis G.J.
        • et al.
        Analysis of C1q polymorphisms suggests association with systemic lupus erythematosus, serum C1q and CH50 levels and disease severity.
        Ann Rheum Dis. 2009; 68: 715-720
        • Guo J.
        • Gao Y.
        • Wang Y.
        • Zou Y.
        • Du Y.
        • Luo C.
        • et al.
        Investigation of C1-complex regions reveals new C1Q variants associated with protection from systemic lupus erythematosus, and affect its transcript abundance.
        Sci Rep. 2018; 8: 1-8
        • Walport M.J.
        • Davies K.A.
        • Botto M.
        C1q and systemic lupus erythematosus.
        Immunobiology. 1998; 199: 265-285
        • van Schaarenburg R.A.
        • Magro-Checa C.
        • Bakker J.A.
        • Teng Y.K.O.
        • Bajema I.M.
        • Huizinga T.W.
        • et al.
        C1q deficiency and neuropsychiatric systemic lupus erythematosus.
        Front Immunol. 2016; 7
        • Yu Y.
        • Zhu C.
        • Zhou S.
        • Chi S.
        Association between C1q, TRAIL, and Tim-1 gene polymorphisms and systemic lupus erythematosus.
        Genet Test Mol Biomarkers. 2018; 22: 546-553
        • Agostinis C.
        • Stampalija T.
        • Tannetta D.
        • Loganes C.
        • Vecchi Brumatti L.
        • De Seta F.
        • et al.
        Complement component C1q as potential diagnostic but not predictive marker of preeclampsia.
        Am J Reprod Immunol. 2016; 76: 475-481
        • Katsi V.
        • Georgountzos G.
        • Kallistratos M.S.
        • Zerdes I.
        • Makris T.
        • Manolis A.J.
        • et al.
        The role of statins in prevention of preeclampsia: a promise for the future?.
        Front Pharmacol. 2017; 8
        • Burnette L.
        • Gemmel M.
        • Gallaher M.
        • Powers R.
        Investigation of a paternal-mediated preeclampsia-like pregnancy phenotype mouse model.
        Pittsburgh Undergr Rev. 2021; 1
        • Kumasawa K.
        • Iriyama T.
        • Nagamatsu T.
        • Osuga Y.
        • Fujii T.
        Pravastatin for preeclampsia: From animal to human.
        J Obstet Gynaecol Res. 2020; 46: 1255-1262
      4. Govender S, Naicker T. The contribution of complement protein C1q in COVID-19 and HIV infection comorbid with preeclampsia: A review. Int Arch Allergy Immunol. 1-13.

        • Lintner K.E.
        • Wu Y.L.
        • Yang Y.
        • Spencer C.H.
        • Hauptmann G.
        • Hebert L.A.
        • et al.
        Early components of the complement classical activation pathway in human systemic autoimmune diseases.
        Front Immunol. 2016; 7
        • Teirilä L.
        • Heikkinen-Eloranta J.
        • Kotimaa J.
        • Meri S.
        • Lokki A.I.
        Regulation of the complement system and immunological tolerance in pregnancy.
        Semin Immunol. 2019; 45: 101337
        • Brown M.A.
        • Magee L.A.
        • Kenny L.C.
        • Karumanchi S.A.
        • McCarthy F.P.
        • Saito S.
        • et al.
        Hypertensive disorders of pregnancy: ISSHP classification, diagnosis, and management recommendations for international practice.
        Hypertension. 2018; 72: 24-43
        • Thakoordeen-Reddy S.
        • Winkler C.
        • Moodley J.
        • David V.
        • Binns-Roemer E.
        • Ramsuran V.
        • et al.
        Maternal variants within the apolipoprotein L1 gene are associated with preeclampsia in a South African cohort of African ancestry.
        Eur J Obstet Gynecol Reprod Biol. 2020; 246: 129-133
        • Harris C.L.
        • Heurich M.
        • de Cordoba S.R.
        • Morgan B.P.
        The complotype: dictating risk for inflammation and infection.
        Trends Immunol. 2012; 33: 513-521
        • Okroj M.
        • Heinegård D.
        • Holmdahl R.
        • Blom A.M.
        Rheumatoid arthritis and the complement system.
        Ann Med. 2007; 39: 517-530
        • Barilla-LaBarca M.-L.
        • Toder K.
        • Furie R.
        Targeting the complement system in systemic lupus erythematosus and other diseases.
        Clin Immunol. 2013; 148: 313-321
        • Racila E.
        • Racila D.M.
        • Ritchie J.M.
        • Taylor C.
        • Dahle C.
        • Weiner G.J.
        The pattern of clinical breast cancer metastasis correlates with a single nucleotide polymorphism in the C1qA component of complement.
        Immunogenetics. 2006; 58: 1-8
        • Racila D.
        • Sontheimer C.
        • Sheffield A.
        • Wisnieski J.
        • Racila E.
        • Sontheimer R.
        Homozygous single nucleotide polymorphism of the complement C1QA gene is associated with decreased levels of C1q in patients with subacute cutaneous lupus erythematosus.
        Lupus. 2003; 12: 124-132
        • Kiss E.
        • Bhattoa H.P.
        • Bettembuk P.
        • Balogh A.
        • Szegedi G.
        Pregnancy in women with systemic lupus erythematosus.
        Eur J Obstet Gynecol Reprod Biol. 2002; 101: 129-134
        • Moroni G.
        • Ponticelli C.
        Pregnancy in women with systemic lupus erythematosus (SLE).
        Eur J Intern Med. 2016; 32: 7-12
        • Rafiq S.
        • Frayling T.
        • Vyse T.
        • Cunninghame Graham D.
        • Eggleton P.
        Assessing association of common variation in the C1Q gene cluster with systemic lupus erythematosus.
        Clin Exp Immunol. 2010; 161: 284-289
        • Devaraju P.
        • Reni B.N.
        • Gulati R.
        • Mehra S.
        • Negi V.S.
        Complement C1q and C2 polymorphisms are not risk factors for SLE in Indian Tamils.
        Immunobiology. 2014; 219: 465-468
        • Zervou M.I.
        • Vazgiourakis V.M.
        • Yilmaz N.
        • Kontaki E.
        • Trouw L.A.
        • Toes R.E.
        • et al.
        TRAF1/C5, eNOS, C1q, but not STAT4 and PTPN22 gene polymorphisms are associated with genetic susceptibility to systemic lupus erythematosus in Turkey.
        Hum Immunol. 2011; 72: 1210-1213
        • Jallow M.W.
        • Cerami C.
        • Clark T.G.
        • Prentice A.M.
        • Campino S.
        • Calafell F.
        Differences in the frequency of genetic variants associated with iron imbalance among global populations.
        PLoS One. 2020; 15: e0235141
        • Nair V.
        • Sankaranarayanan R.
        • Vasavada A.R.
        Deciphering the association of intronic single nucleotide polymorphisms of crystallin gene family with congenital cataract.
        Indian J Ophthalmol. 2021; 69: 2064
        • Sellar G.
        • Blake D.J.
        • Reid K.
        Characterization and organization of the genes encoding the A-, B-and C-chains of human complement subcomponent C1q. The complete derived amino acid sequence of human C1q.
        Biochem J. 1991; 274: 481-490
        • Sinha D.
        • Wells M.
        • Faulk W.P.
        Immunological studies of human placentae: complement components in pre-eclamptic chorionic villi.
        Clin Exp Immunol. 1984; 56: 175